
Weighing	Continuations	for	
Concurrency

Kavon	Farvardin
University	of	Chicago

MS	Presentation
March	31,	2017

Continuations

fun fact 0 = 1
| fact n = let
val n_1 = fact (n-1)
in
n * n_1

end

Continuations

fun fact (0, return) = return 1
| fact (n, return) = let

fun retK n_1 = return (n * n_1)
in
fact (n-1, retK)

end

CPS	Factorial	Visualized

n = 4 | return = fact(3,)

n = 3 | return = fact(2,)

n = 2 | return = fact(1,)

n = 1 | return = fact(0,)

Implementation	Strategies

Language	support	for	continuations

type ‘a cont

callcc : (‘a cont -> ‘a) -> ‘a
throw : ‘a cont -> ‘a -> ‘b

First-class	Continuations

val ans = callcc (fn bind => let
fun prod (hd::tl) =
if hd = 0
then throw bind 0
else hd * (prod tl)

in
prod nums

end)

Continuations	and	Concurrency

type thread = unit cont

new : (unit -> unit) -> thread
schedule : thread -> unit

(* thread actions *)
exit : unit -> ‘a
yield : unit -> ‘a

Continuations	and	Concurrency

fun new f =
callcc(fn ret => (

callcc(fn thd => throw ret thd);
f();
exit()

)
)

Binding	an	Escape	Continuation

cont k () =
A

in
B

• Binds	k	in	the	scope	of	“B”.
• Captures	the	current	continuation.
• Can	only	be	thrown	once.

cont k () =
return 7

in
if cond
then return 5
else throw k ()

Implementing	Continuations	for	Concurrency

• Low	sequential	overhead.
• Extremely	cheap	capture	and	throw.
• Easy	to	integrate	into	a	compiler.

Goals:

Which	strategy	should	we	use?

Prior	Evaluations

•Clinger	et	al.	compared	implementations	of	callcc

• Direct	measurements	performed	nearly	30	years	ago

• Callcc is	expensive	for	concurrency

•Appel	and	Shao	analyzed	using	simulation	&	theory

•Bruggeman et	al.	had	a	short	evaluation.

Fact	or	Fiction?

• Rust	and	Go	developers	reported	a	“segment	bouncing”	problem.

• MultiMLton and	Guile	avoided	segmented	stacks	due	to	the	reports.

• Bruggeman et	al.	described	a	solution	for	the	bouncing	in	1996.

Are	segmented	stacks	actually slow?

This	Work:	An	Empirical	Evaluation

• What	are	the	trade-offs	of	various	strategies	for	continuations?

• Implementation	details	are	crucial.

• Strategies	are	implemented	and	measured	with	a	single	compiler.

• Provide	an	empirical	analysis	of	trade-offs.

Implementation

Manticore and	CPS

• Manticore is	a	compiler	for	parallel	functional	programming.

• Continuation-passing	style	(CPS)	is	used	for	optimization	&	codegen.

• Continuations	are	heap-allocated;	made	up	of	immutable	frames.

Stack-allocating	Continuations

• Manticore makes	no	use	of	a	“stack”;	all	calls	are	in	tail	position.

• Native	codegen for	an	efficient	stack	is	a	pain.

• LLVM	already	supports	stack	allocation;	Manticore can	use	LLVM.

• How	can	a	CPS-based	compiler	use	LLVM	with	a	stack?

Undoing	CPS

Key	Observation*

Most	continuations	created	by	CPS	are	well	behaved.

*	by	Danvy,	Kelsey,	etc.

Undoing	CPS

It	starts	with	a	good	intermediate	representation:

• Continuations	and	functions	are	different.

• Continuation	parameters	added	by	CPS	are	distinguished.

cont k () = A in B <-> throw k ()

fun f (x, y / k) = A <-> f (1, 2 / k’)

Noninvasive	Compiler	Upgrades

DS CPS
CPS	convert

CFG
(first-order)

Closure	
convert LLVM.	.	.

Closure	&	DS	
convertClassify	&	Wrap

Continuations

Classifying	Continuations

fun g x = x
fun f x y = if x > 10 then h((g x) + y) else h x

fun g (x / k) = throw k x
fun f (x, y / k) =

cont doH z = h (z + y / k) in
if x > 10

then g (x / doH)
else h (x / k)

CPS

Non-tail	call
Tail	call

Return	throw

Return	continuations	are	
only	ever	used	or	passed	
from	the	same	function.

Higher-order	DS

Wrapping	Escape	Captures

fun foo(_ / retK) =
cont k (x) =

A
in

B

fun foo(_ / retK) =
cont k’ (x) =

A
in

cont landingPad(ret, x) =
if ret
then throw retK x
else throw k’ x

in
fun bindK(k ..) = B
in

callec (bindK / landingPad)

Converting	to	Direct	Style

fun g (_, x) = return x
fun f (ep, x, y) =

block doH (ep, z, y) =
tailcall h (z + y)

if x > 10
then z = call g x

goto doH (ep, z, y)
else tailcall h x

First-order	DS

fun g (x / k) = throw k x
fun f (x, y / k) =

cont doH z = h (z + y / k) in
if x > 10

then g (x / doH)
else h (x / k)

Higher-order	CPS

Generating	Assembly	with	LLVM

We	modified	LLVM	to	generate	code	for	different	continuation	strategies.

Using	LLVM,	Manticore now	supports:

• Contiguous	Stacks
• Segmented	Stacks
• Heap-allocated,	Immutable	Control	Stacks

Contiguous	Stack
Stack Descriptor

Guard Page

Free Stack Area

Heap

Landing Pad Frame

LongJmp

Captured Frames

SP

Escape Continuation
(Stacks	grow	downwards)

Allocating	Frames	on	a	Stack

Frame	Reuse	for	Non-tail	Calls

Segmented	Stack
Ptr to	Previous	Segment

(This	is	an	individual	segment)

Segmented	Stack	Prologue

Segment	Overflow

Evaluation
“The	real	performance	cost	of	first	class	continuations	is	the	time	and	money	
required	to	implement	them.”	– Clinger	et	al.	(1988)

The	Important	Bits

• Sequential	performance

• Concurrency	overhead

• Friendly	implementation

CPU	Support	
for	Stack	Allocation

Pr
og

ra
m

ackermann

takeuchi

life

minimax

queens

quicksort

nbody

GEOMEAN

Speedup Using Return-address Stack
0 0.2 0.4 0.6 0.8 1 1.2

1.04

0.99

0.97

1.06

1.17

0.93

1.1

1.07

1.04

1

1.01

1.06

1.15

0.97

1.11

1.02

contiguous stack segmented stack

R
el

at
iv

e
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Microbenchmark
ackermann takeuchi

cps contiguous segmented contiguous (noras) segmented (noras)

Sequential	Microbenchmarks

Sequential	Programs
R

el
at

iv
e

Sp
ee

du
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Program

life minimax queens quicksort nbody

cps contiguous segmented contiguous (noras) segmented (noras)

GC	time	as	percentage	of	overall	running	time

Ti
m

e
Sp

en
t i

n
G

C

0%

10%

20%

30%

40%

50%

60%

70%

80%

Program
ackermann takeuchi life minimax queens quicksort nbody

cps contiguous segmented

GC	time	as	percentage	of	overall	running	time

Nursery Copies
Ack (CPS) 6242M (44%)

Quicksort (CPS) 703M (30%)

Ack (Stack) 1039M (13%)

Quicksort (Stack) 313M (20%)

CPS	does	place	more	load
on	the	garbage	collector
when	stacks	are	extremely	deep.

CML	Message	Passing	Overhead
Ite

ra
tio

ns
 p

er
 M

illi
se

co
nd

0

600

1200

1800

2400

3000

CML Ping-pong Microbenchmark

475

2,564

1,863

cps contiguous segmented

Higher	is	better

CML	Thread	Creation	Overhead
Ite

ra
tio

ns
 p

er
 M

illi
se

co
nd

0

600

1200

1800

2400

3000

Fork-Join Microbenchmark

136

2,007

2,586

cps contiguous segmented

Higher	is	better

Pros	and	Cons
Sequential
Performance

Concurrency
Overhead

Recursion	
Bound

Implementation	
Pain

CPS
☹ 😃 😃 😃

Contiguous
😃 😃 ☹ ☹

Segmented
🙂 🐢 😃 😱

Conclusions

• There	is	no	ideal	strategy.

• CPS	makes	sense	for	easy	and	fast	concurrency.

• Contiguous	stacks	are	faster	if	you	sacrifice	friendliness.

• Segmented	stacks	are	hard	to	implement	and	tune.

Future	Work

• Analyze	additional	variants	of	strategies.

• Expand	evaluation.

• Submit	for	publication	😉

