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Abstract

The efficient implementation of function calls and non-local
control transfers is a critical part of modern language im-
plementations and is important in the implementation of
everything from recursion, higher-order functions, concur-
rency and coroutines, to task-based parallelism. In a compiler,
these features can be supported by a variety of mechanisms,
including call stacks, segmented stacks, and heap-allocated
continuation closures.

An implementor of a high-level language with advanced
control features might ask the question “what is the best
choice for my implementation?” Unfortunately, the current
literature does not provide much guidance, since previous
studies suffer from various flaws in methodology and are
outdated for modern hardware. In the absence of recent,
well-normalized measurements and a holistic overview of
their implementation specifics, the path of least resistance
when choosing a strategy is to trust folklore, but the folklore
is also suspect.

This paper attempts to remedy this situation by providing
an “apples-to-apples” comparison of six different approaches
to implementing call stacks and continuations. This com-
parison uses the same source language, compiler pipeline,
LLVM-backend, and runtime system, with the only differ-
ences being those required by the differences in implementa-
tion strategy. We compare the implementation challenges of
the different approaches, their sequential performance, and
their suitability to support advanced control mechanisms, in-
cluding supporting heavily threaded code. In addition to the
comparison of implementation strategies, the paper’s con-
tributions also include a number of useful implementation
techniques that we discovered along the way.
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1 Introduction

The efficient implementation of function calls and non-local
control transfers is a critical part of modern language im-
plementations and is important in the implementation of
everything from recursion, higher-order functions, concur-
rency and coroutines, to task-based parallelism. In a compiler,
these features can be supported by a variety of mechanisms,
including call stacks [21], segmented stacks [39], and heap-
allocated continuation closures [5], but semantically they
can all described in terms of continuations [55].

An implementor of a high-level language with advanced
control features might ask the question, “what is the best
choice for my implementation?” Much of the current un-
derstanding of performance trade-offs are based on cross-
language and cross-compiler comparisons [19], simulations
and theoretical analysis [10], or direct measurements per-
formed 30 years ago [17]. In the absence of recent, well-
normalized measurements and a holistic overview of their
implementation specifics, the path of least resistance when
choosing a strategy is to trust folklore.

But, sometimes the folklore is misleading! When weigh-
ing one strategy against another, it is crucial to have a deep
understanding of the design space. For example, MuLTIML-
ToN and GUILE avoided the use of segmented stacks in part
because of reports from RusT and Go developers suggesting
poor performance owed to segment thrashing [1, 50, 58, 62].
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In fact, the problem of segment thrashing was solved by
Bruggeman et al. in the Chez Scheme compiler [15]. A subtle
aspect of their solution is its effectiveness only for runtime
systems that do not allow pointers into the stack, which is
typical for garbage-collected languages.

This paper attempts to remedy this situation by providing
an “apples-to-apples” comparison of six different approaches
to implementing call stacks and continuations. The com-
parison is performed using the Manticore system [14, 30],
which implements a parallel and concurrent subset of Stan-
dard ML [32]. We use the same source language, compiler
pipeline, LLVM-backend, and runtime system for every ap-
proach, with the only differences being those required by
the particular implementation strategy. We compare the im-
plementation challenges of the different approaches, their
sequential performance, and their suitability to support ad-
vanced control mechanisms, including supporting heavily
threaded code as found in Concurrent ML (CML) [54], Er-
LANG [11], and Go [25] programs. In addition to the compar-
ison of implementation strategies, the paper’s contributions
also include a number of useful implementation techniques
that we discovered along the way.

The remainder of the paper is organized as follows. We
begin with a comparison of prior evaluations of various im-
plementation schemes. We then describe the context of our
work in Section 3 and a detailed discussion of the imple-
mentation space in Section 4, including a discussion of the
challenges of each approach. Section 5 presents the main
results of the paper. Finally, we conclude in Section 6.

2 Prior Work

The earliest comparison of implementation strategies was by
Clinger et al. [17] in 1988, who focused on support for first-
class continuations as found in Scheme. Their experiments
were based on the MacScheme compiler with support for
various implementation schemes (including several that we
evaluate). Their conclusions were that contiguous stacks
are ill-suited to efficient first-class continuations, because
of the extra cost of stack copying, and that heap-allocated
stack schemes are sensitive to the efficiency of the garbage
collector.

At the same time, the Standard ML of New Jersey (SML/NJ)
compiler switched to using heap-allocated continuation clo-
sures in its implementation [7]. Appel argued that a gen-
erational garbage collector could result in heap allocation
being faster than stack allocation [3] and switching to heap-
allocated continuations simplified the implementation — this
opinion was somewhat controversial [45]. In later work, Shao
and Appel presented a rigorous argument that continuation
closures were more efficient than a traditional stack-based
implementation [10]. Their arguments regarding efficiency
were supported by theoretical analysis and simulations pro-
duced using a modified compiler that measured cache effects
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and instruction counts. Their cost model was fairly simple, as-
suming single-cycle instructions, a direct-mapped data cache
with a 10-cycle read-miss penalty, no write miss penalty, and
an infinite instruction cache. The main weakness in their
analysis was that the instruction counts for stack-frame ini-
tialization was inflated because of no frame reuse for non-tail
calls [19, Section 7].

In 1999, Clinger et al. [19] expanded their work from 1988
with deep analytical discussion that directly responded to
Shao and Appel’s study and was backed by proxy perfor-
mance metrics. They argued that for most programs, a seg-
mented stack or an incremental stack/heap strategy is better
than the strategy put forward by Shao and Appel. But their
direct performance evaluation was minimal, consisting of
an experiment with four different compilers tested on one
synthetic coroutine benchmark that made heavy use of first-
class continuations.

The main problem with these previous studies is that they
are outdated for modern processors that have deep cache
hierarchies, high clock rates, and sophisticated branch pre-
diction hardware.

A number of other analyses have focused on the efficiency
of frame allocation and reuse for call stacks. Explicitly man-
aging the allocation of frames in a contiguous “stack region”
(e.g., reusing recently popped frames first) is commonly seen
as a technique that benefits performance in two ways: im-
proved cache locality and reduced garbage collector load.

Gongalves and Appel [36] show that most frame reads are
performed very soon after allocating frames and thus would
still be in the cache regardless of whether the frame was
allocated in the heap or not. Stefanovic and Moss [59] found
that the lifetimes of immutable, heap-allocated frames were
extremely short, which suggests that with sufficient memory
and a copy-collected nursery the load on the garbage col-
lector may not be so large [3]. Hertz and Berger [38] found
that the regular compaction offered by such a nursery is also
beneficial to cache locality versus other schemes for heap
allocation, but it is unclear whether this benefit can match
the efficiency of stack allocation.

3 Background

This section surveys some necessary background. We start by
briefly introducing the concept of continuations and the use
of continuation-passing style in a compiler’s intermediate
language (IR). We then motivate this choice with some simple
examples of how such an IR can implement advanced control-
flow mechanisms. We then describe the Manticore system,
which provides our experimental testbed and finish with a
description of the six call-stack implementation strategies
that we compare.
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exp == let (x1,...)=prim(yy,...)
| fun f(xl,.../k)zel in €2
| cont k(xl, .. ) =€ in (2]
| ifxthene; else e
| apply f(x1,.../k)
| throw k(xi,...)
prim = primitive operations and values

Figure 1. A continuation-passing-style IR.

3.1 Continuations

Given any point in the program, its continuation is the ab-
stract notion of the “rest of the computation.” A continuation
represents this notion by capturing all of the values needed
to continue execution, such as the call stack and other live
values. For example, once an arithmetic instruction has com-
pleted, the continuation of that instruction consists of the
machine registers containing live values, the reachable mem-
ory, and the next instruction to be executed.

When entering a function, the top of the call stack rep-
resents the return continuation of that invocation, i.e., the
context in which the function’s result is needed. Concretely,
the continuation is represented by the return address (on
the top of the stack or in a register) and the stack pointer;
with these two pieces of information, control can be returned
to the call site. Of special interest are tail calls, which are
calls that are the last thing a function does before return-
ing. Because the continuation of a tail call is just the return
continuation of the calling function, an implementation can
optimize the call to save space. In a stack-based implemen-
tation, this optimization involves deallocating the caller’s
stack frame before making the tail call (which is implemented
as a jump). For functional languages, which often express
iteration as tail recursion, this optimization is critical.

3.2 Continuation-Passing Style

It is difficult to precisely discuss function calls and other
control-flow mechanisms without introducing a standard
notation for them. For purposes of this section, we introduce
a factored continuation-passing style IR that makes non-local
control flow explicit using continuations;' Figure 1 gives the
abstract syntax of this IR. This IR distinguishes between
user functions (defined by fun and applied by apply) and
continuations (defined by cont and applied by throw). For
example, consider the recursive factorial function written in
SML:

fun fact n = if n = 0
then 1
else n * fact (n - 1)

For compactness, the continuations of primitive operations and conditional
control flow are implicit in the syntax.
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This function is represented as follows in the CPS IR:

fun fact (n / k) = 1
let isZero = n == 0 in 2
if isZero 3
then throw k (1) 4

else cont retK (x) = 5

let res = n * x in 6

throw k (res) 7

in 8

let arg = n - 1 in 9

apply fact (arg / retK) 10

The additional parameter k to fact is bound to the return
continuation, which is used by an invocation of fact to
return a result to its caller (lines 4 and 7). The continuation
retK (lines 5-7) is the return continuation for the non-tail-
recursive call to fact in the ML code.

3.3 Reified Continuations

The slash used in the parameter list of fun expressions sep-
arates continuation parameters introduced by CPS conver-
sion,? from uses of parameters that are bound to reified con-
tinuations in the original program. Reified continuations are
continuations that are captured as concrete values and can be
used to express various advanced control-flow mechanisms.

Reified continuations are typically classified based on their
allowed number of invocations and their extent (or lifetime),
as these factors affect their implementation. If a continuation
can be invoked at most once, it is known as a one-shot contin-
uation [15]; otherwise it is called a multi-shot continuation
and can be invoked arbitrarily many times. A continuation
can either have a stack extent (like stack-allocated variables)
or an unlimited lifetime.

The first-class continuations produced by callcc (found
in Scheme and some implementations of ML) are multi-shot
continuations with unlimited lifetime. A restricted form of
callcc, called callicc [15], reifies one-shot continuations
of unlimited lifetime.> An escape continuation is a one-shot
continuation whose lifetime is limited to its lexical scope [29,
49]. Escape continuations are simpler to implement due to
their restrictions, yet still powerful enough to implement
context-switching operations.

3.4 Programming with Continuations

There are many examples in the literature of using reified
continuations to implement a wide range of advanced control-
flow mechanisms [26, 37, 41, 48, 52, 53, 61]. Such implemen-
tations could either be user-level code or part of a compiler’s
implementation of language features. To provide a bit of

2Note that in our implementation, we add an additional continuation pa-
rameter to represent the current exception continuation.

3While the return from calllcc is itself a use of the captured continuation,
this use is not enough to restrict its lifetime: nested usage of calllcc allows
for the return to be skipped.
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flavor of what such code looks like, we consider the imple-
mentation of coroutines using the weakest form of reified
continuation: escape continuations. We assume that we have
the following ML interface to this mechanism:

type 'a econt

val callec ('a econt -> 'a) -> 'a
val throw 'a econt -> 'a -> 'b
val newStack : ('a -> unit) -> 'a econt

Escape continuations are reified using callec and applied
using throw. Because escaping continuations have stack ex-
tent, they cannot be used to create new execution contexts,
so we include the function newStack for this purpose.

We illustrate these mechanisms with a simple coroutine
implementation: A suspended coroutine’s state can be repre-
sented as a unit-valued continuation and we assume a global
scheduling queue with enqueue and dequeue operations.

type coroutine = unit econt

val enqueue coroutine -> unit

val dequeue : unit -> coroutine

Then we can define a function to schedule the next ready
coroutine.

fun dispatch () = throw (dequeue ()) ()
The yield function for switching coroutines is

fun yield () = callec (fn k => (
enqueue Kk;
dispatch ())

And creating a new thread is implemented as

fun spawn (f : unit -> unit) = let
val k = newStack f
in

enqueue k;
yield()
end

It is clear from this code that the continuations reified by
callec are never invoked more than once and that they have
stack extent. Because of the restrictions placed on escaping
continuations, they can be easily implemented in a stack-
based runtime model.

3.5 The Manticore System

The Manticore system [14, 30] implements a parallel dialect
of ML (called PML) that includes support for Concurrent ML-
style message passing [52]. The compiler is a whole-program
compiler that is structured as a pipeline of transformations
between a sequence of intermediate representations. Code
to implement concurrency and parallelism features is imple-
mented using reified continuations and is available to the
compiler to optimize. The additional stack-based strategies
added to Manticore only support Concurrent ML, because
our compiler’s current desugaring of implicit parallelism
assumes there are no lifetime restrictions on continuations.
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For purposes of this paper, the last three stages are the
most important. These start with an ANF-style representa-
tion that is then CPS converted to an IR similar to the one in
Figure 1. We perform a number of optimizations on the CPS
representation and then apply a flat, safe-for-space closure
conversion to transform it to a first-order CPS representa-
tion with explicit continuation closures [7]. The first-order
representation supports both closure passing to implement
call/return linkage and traditional function calls.

For the stack-based runtime models, we modify closure
conversion using a combination of ideas from Danvy and
Lawall [20], Kelsey [40] and Reppy [51] to map non-tail
calls to traditional call operations and to introduce callec
operations to reify any escape continuations that are present.

The first step of this process involves an analysis pass over
the CPS IR to classify continuation bindings and function
applications. A local continuation is one whose uses are
strictly limited to the function in which it is bound, and
only as either the target of a throw, or passed as a return
continuation in an apply. All non-local continuations are
considered escape continuations, which are wrapped with
callecin a transformation following analysis. First, the CPS
IR is augmented with a new expression construct callec
(f /k), which represents a special application of function f
to a reified version of continuation k. Then, for an escape
continuation binding cont escK(x) = e; in ey, we replace
e; with the expression:

fun f (escK’ / retK) = e
in
callec (f, escK)

Now, the escape continuation has only one use as the return
continuation in a function application, so it is reclassified
as a local continuation. Details about how we prevent previ-
ously local continuations used in e, from becoming non-local
after this transformation are described by Farvardin [27]. Fi-
nally, closure conversion continues as usual, except that an
apply that passes a return continuation different than the
one bound in its enclosing function is mapped as a non-tail
call.

The original Manticore compiler used the MLRisc frame-
work [33, 42] to generate code for the Intel x86-64 architec-
ture, but for this work we have replaced this code generator
with LLVM [27, 28].

Each “virtual processor” (VProc) in the Manticore run-
time system corresponds to one process-level thread, i.e. a
pthread. A private thread-scheduling queue is assigned to
each VProc, which relies on a timer for thread preemption.
For the purposes of this paper, we use only one VProc for the
CML benchmarks in order to compare fairly with SML/N]J
and to focus on each strategy’s overheads.

The Manticore garbage collector and heap architecture,
which are optimized for parallel scalability [12], are the most
relevant aspects of the runtime for this work. Each VProc in
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the system has a private heap that is divided into a nursery
and an “old” space. In addition, there is a global heap that is
shared across all VProcs. Minor collections copy data from
the nursery into the old space and major collections copy
data from the old space to the global heap (this part of the
design is a modified version of Appel’s semi-generational
collector [4]). Global collections are done in parallel for the
global heap. Following the approach of the Doligez-Leroy-
Gonthier (DLG) collector [23, 24], we maintain the invariant
that there are no pointers from the global heap into the
private heaps (and no pointers from the old space into the
nursery). To maintain this invariant, we must promote values
to the global heap in order to make them globally visible (e.g.,
when sending a message on a channel or when updating a
mutable reference). For pure sequential code, like most of
the programs that we benchmarked, this memory system
basically works like a simple generational copying collector
and performs well. The design does have a significant impact
on a few of the benchmarks, which we discuss in Section 5.

3.6 Strategies

We study six different implementation strategies, ranging
from traditional contiguous stacks of fixed size to heap-
allocated continuation closures. The six strategies are as
follows; we tag each approach with a short name that is used
when presenting the data in the next section.

contig — stack frames are allocated in a large, fixed-size
contiguous region, which is the native stack discipline
used by C.

resize — stack frames are allocated in a contiguous re-
gion that is initially small. The stack is copied to a new
region that is twice as large when the stack overflows.

segment — stack frames are allocated in contiguous
fixed-size segments, which are linked together.

hybrid — a hybrid scheme that uses a resizable stack
until the the stack grows to the size of a segment, at
which point the call stack is managed as a segmented
stack.

linked — each individual stack frame is allocated as a
mutable heap object and the stack is represented as
a linked list of frames. This scheme should not be
confused with a “linked closure” representation for
nested functions [56].

cps — is a direct translation of the first-order CPS repre-
sentation where return continuations are represented
by immutable, heap-allocated continuation closures.
This approach was used in the original implementa-
tion of Manticore [28, 31] and is similar that used in
SML/NJ [5].

The first five of these strategies, which we call the stack
strategies, implement return continuations using a call-stack
abstraction, where stacks are mutable and non-tail calls re-
turn to the caller’s frame. They differ in how the call stack is
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Figure 2. High-level spectrum of call stack implementations,
as a function of the number of pointers used to maintain the
structure. Dashed lines separate stack frames.

represented, where the representation can be characterized
by how often pointers are used to link frames together as
shown in Figure 2. At one end of the spectrum, contiguous
stacks (including resizable stacks) require no pointers. The
segmented and linked strategies require varying numbers of
linking pointers: one per segment vs. one per frame. More
pointers results in more runtime overhead to function calls,
but also reduces space efficiency.

4 Implementation Issues

A major concern for compiler designers is the efficiency of
the call stack for sequential programs. The five stack strate-
gies all avoid allocation for return continuations and are
able to preserve live values across calls by saving them in
their frames. Furthermore, these strategies use the hard-
ware instructions for call/return, which can lead to better
branch prediction (see Section 5.2.2). Where they differ is
in their complexity of implementation (both compiler and
runtime), their memory footprint for heavily threaded appli-
cations, and the overhead needed to check for and handle
stack overflow. The cps strategy, on the other hand, pro-
vides the simplest implementation and very efficient support
for advanced control-flow features, but it increases memory
allocation rates.

In the remainder of this section, we discuss the technical
issues and challenges posed by the six strategies.

4.1 Stack Overflow

Functional programs often make use of deep recursion, such
as non-tail-recursive list traversals, which means that their
implementations must be concerned with the potential for
stack overflow. There are two issues that an implementation
must address: how to detect overflow and what to do about
it. The two primary methods of detecting overflow are page
protection (to cause a fault on overflow) and explicit limit
checks in function prologues.

The contig strategy reserves a fixed-size stack area that
cannot be expanded in the event of overflow. This design
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choice removes the burden of checking for stack overflow
and avoids the requirement of updating pointers into the
stack during a relocation, but it requires provisioning threads
with very large stacks to reduce the likelihood of stack over-
flow. Most implementations of contiguous stacks (including
ours) uses a guard page at the end of the stack region that is
memory protected. Stack overflow is detected by a memory
fault, which results in the program being terminated.

The resize, segmented, and hybrid strategies use ex-
plicit stack-limit checks to detect when the stack must grow.*
For the resize strategy, we copy the stack into a new region
that is twice the current region’s size. For the segmented
strategy, we allocate a new segment and copy a few frames
from the caller’s segment to the new segment, which reduces
the likelihood of thrashing between two segments. We allo-
cate segments from the stack cache of recently freed stack
memory objects, which reduces allocation time and improves
cache locality in some situations.

The linked and cps strategies do not require stack over-
flow checks, since they use heap allocation.

4.2 Reducing Frame Allocation

A capture-free function is a function that contains no calls
other than tail calls. An important subset of capture-free
functions are leaf functions, which are functions that con-
tain no function calls. Most function calls in a program are
to leaf functions [6], so they are crucial to optimize. Because
capture-free functions do not capture their return continua-
tion (they either return or pass their return continuation in
a tail call), one can omit frame allocation for them as long
as they do not use stack memory (e.g., for register spilling).
This optimization is particularly useful for strategies that
use explicit stack-limit checks, since it avoids the overhead
of the limit check and the overhead of a failed check.

There are also techniques for reducing the amount of al-
location required for continuation closures. These include
adding dedicated “callee-save” registers to the calling con-
vention that can be used to pass live values from the caller
to its return continuation [9]. Another effective technique
uses linked representations of continuation closures, instead
of flat closures [57]. Each of these techniques has non-trivial
implementation costs in the compiler, so we have not imple-
mented them in our testbed, but these techniques individu-
ally produced runtime improvements in the 10-20% range
in the SML/N] compiler.

4.3 Finding GC Roots

Accurately identifying live heap pointers, or roots, in the
mutator’s state is necessary for garbage collected languages.

4Guard pages are a potential alternative, but they suffer from two issues: first,
the operating system may place limits on the number of protected pages in
a process’s address space and, second, it can be difficult to robustly recover
from a guard-page memory fault, since it requires precise information about
the state of the stack at the exact point of the fault.
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For the stack-based strategies, this issue adds significant
complexity to both the compiler and runtime system.

Assuming that garbage collection can only occur at well-
defined program points where the location of potential roots
is known, we need a way to identify the live roots at each non-
tail call site in the program. This information can be main-
tained without runtime overhead by generating a map from
return addresses to root-location data at compile time [22].
The garbage collector uses this map to lookup a description
of the frame slots and other information while parsing a call
stack. The map can be implemented using a hash table (finite
map), or spatially by placing metadata data just before the
instruction pointed to by the return address [39, Figure 4].

The use of callee-save registers adds another layer of com-
plexity to identifying roots. The difficulty is that the type of
value in those registers, i.e., whether the value is a pointer,
is dependent upon the function’s caller. Cheng et al. [16]
found that the presence of callee-saved registers requires a
two-pass approach when scanning the stack to compute the
root set. Because of this complexity, we did not implement
callee-save registers in our compiler.

For the stack-based strategies, we rely on LLVM’s support
for precise garbage collection in the presence of frame shar-
ing and reuse [44]. LLVM generates information alongside
the code describing the layout of live pointers in the stack
frame at every call site. We then build a hash table keyed on
return addresses during runtime-system initialization that is
used by the GC while scanning a stack.

Generational garbage collection has proven to be an ef-
ficient means of implementing functional languages, given
the high allocation rate of ephemeral data. Cheng et al. [16]
found that scanning stacks for GC roots can also benefit
from a generational approach. They found that much of
the garbage collector’s time was spent rescanning deep con-
trol stacks, where most of the frame’s roots have already
been promoted. There are a number of ways to implement
generational stack collection [2], with the universal goal of
detecting whether a given stack frame has been modified
since the last collection cycle.

For the stack-based strategies, we place a water mark in
each stack frame to avoid excessive stack scanning. A water
mark is an indicator shared between the mutator and garbage
collector that represents the state of the frame and its prede-
cessors. In our runtime system, there are three values a mark
can take on, one for each generation from youngest to oldest:
nursery, major heap, global heap. Whenever a function is
called, the mutator places a nursery mark in the frame allo-
cated by that function, indicating that the frame may contain
pointers into the nursery. During the collection of a gener-
ation, these water marks are overwritten by the collector
with the indicator corresponding to the generation that the
frame’s pointers were promoted. The collector will stop scan-
ning a stack once it sees a watermark that is older than the
current generation being reclaimed. This point represents
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the high-water mark of the current stack, i.e., the furthest
point back where pointers in the current generation may
reside, as all pointers behind it have already been forwarded.
Critically, the collector must still scan the first older frame
that is encountered, because the mutator only adds a fresh
nursery watermark when the frame is allocated. Thus, a func-
tion that has completed a non-tail call between collections,
but has not yet returned, will have an older watermark in its
frame than its data requires.

The cps strategy requires no special support for stack scan-
ning, since the continuation closures are ordinary immutable
heap objects that the garbage collector already handles. The
root set are just the live pointer-containing registers at the
point where GC is invoked.

4.4 CPU and ABI Support

Historically, instruction sets such as the x86 have contained
dedicated instructions to assist with function calls and frame
initialization. Some CPUs use hardware in the instruction
pipeline to reduce the cost of adjusting the stack pointer
register and increase branch prediction rates for call and
return [35]. We found the overhead to be lower than re-
ported by Pettersson et al. [47] on modern x86-64 processors
(Section 5.2.2).

The combination of dedicated stack instructions and the
operating system’s application binary interface (ABI) con-
strains the implementation of call stacks. Many foreign-
function ABIs expect a large contiguous region of memory
and rely on a guard page to detect stack overflow (Section 4.1),
thus passing a stack pointer that is in the middle of a heap-
allocated stack to a foreign function is unsafe without the
addition of a guard page in the heap. If stacks in the heap are
also relocated, the garbage collector must use system calls
to enable and disable the guard pages associated with them,
which is expensive. An alternative approach is to switch to
a dedicated stack for for each foreign-function call, which
incurs a few instructions per call to swap a different stack
into the stack pointer register.

For contiguous stacks, foreign calls can be implemented
using the same stack. Our implementation of contiguous
stacks matches the expectations of the ABI, so there is min-
imal overhead in making a foreign call. The resize, seg-
mented, and hybrid strategies cannot directly call foreign
functions using the current stack, since it is possible that the
amount of head room is insufficient to execute the foreign
call [1]. Instead, we call a runtime-system shim that switches
to a dedicated contiguous stack to make the call. The same
strategy is essentially used for the linked-frame stacks. In
the cps strategy, the stack-pointer register is free and used
to hold the foreign-function stack, which is where we spill
registers between Manticore function calls and to perform
foreign-function calls with no overhead.
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4.5 Thread Creation

Implementing first-class continuations for the stack strate-
gies is difficult, so we limit them to the escape continua-
tions (i.e., callec), which means that we must provide the
newStack primitive to create a fresh execution context for
these strategies. The newStack function allocates a fresh
memory object for the stack (the size depends on the strat-
egy) with one initial frame that exits when invoked. Then,
we push a frame that contains the given function f and a
return address for code that expects a value to be returned,
after which it will apply f to that value. The resulting stack
is packaged as an escape continuation that will execute the
function. when it is thrown to.

There is an additional complication in the presence of
parallelism. Consider, for example the yield function from
above (ignoring the fact that there is no locking in the code).

fun yield () = callec (fn k => (
enqueue k;
dispatch ()))

Notice that the scheduling code is running on the same stack
as is reified by the continuation k. Thus, there is a race con-
dition between the adding of k to the scheduling queue and
the dispatching of the next thread. During this interval, it
is possible that another thread might schedule k before the
next thread is dispatched. At that point, there would be two
active execution threads attempting to use the same stack
frame. There are several possible solutions to this problem.
One approach is to have a per-stack lock bit that is acquired
when the continuation is captured by the callec and then
released when the next thread is dispatched [29]. Another
processor attempting to schedule the continuation k would
end up spinning on the lock until it had been released. Li
et al. [43] proposed to avoid this race by modeling the ex-
change with software-transactional memory, although this
approach turned out to be too costly and was abandoned.
Our approach, which is also what GHC does, is to switch
to a scheduler stack before executing the scheduling code.
Thus, by the time the original stack becomes visible to other
processors, it is no longer being actively used to run the
scheduling code.

The cps strategy does not suffer from these problems.
First, it can support proper first-class continuations, which
can be used to implement the newStack primitive directly.
Second, because continuation closures are immutable, there
is no race condition during scheduling.

4.6 Implementing callec

The implementation of callec and throw for the contig
strategy is fairly straightforward. Essentially, callec is equiv-
alent to C’s setjmp function and throw is equivalent to
longjmp.

The resize, segmented, and hybrid strategies were the
most challenging because of the need for frame copying on
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overflow. The difficulty is that once a continuation is reified
(or captured), a pointer into the stack exists in the heap, so
it is no longer safe to move that frame during an overflow
without keeping a remembered set of captured continuations.

Originally we implemented callec just as Bruggeman
et al. [15] describes calllcc, where an early-overflow with
no frame movement occurs instead of segment splitting. We
found this to be extremely slow in programs that make heavy
use of callec. Bruggeman et al. [15]’s implementation of
callcc seals off the reified continuation by splitting the
space for the segment into two halves, using a special under-
flow frame in the middle of the segment to separate them.
This frame acts as a stopping-point for the stack walker dur-
ing an overflow, to protect the captured frames from being
moved.

Implementing the segment-sealing technique as described
would have been tricky given our existing implementation.
Instead, our solution is to mark the whole segment as not
copyable on overflow if a continuation capture occurs in the
segment, with that mark being cleared once the segment
is freed. This marking technique acts as a conservative ap-
proximation of Bruggeman et al. [15]’s segment-splitting
technique for callcc. For example, during overflow a re-
sizing stack will allocate a region that is twice the size of
the previous as usual, but if the previous region is marked
as non-copyable, no frames are moved and instead an un-
derflow frame is pushed to the new stack region that will
dispatch control to the previous stack region when invoked.

Eager memory management was also crucial for the ef-
ficiency of the resize, segmented, and hybrid strategies.
Freeing a segment on underflow by pushing it on the top
of the stack cache is important, along with additional meta-
data to check whether it is safe to free a segment during a
throw. We inspect inspect both the from and to segments
during a throw to see if they’re from the same or different
continuation contexts, which is a unique ID assigned to each
stack produced by newStack. During a throw, if the from
and to segments are not equal but within the same continu-
ation context, then it is always safe to free the from segment
(because of the lifetime restriction of escape continuations).
Otherwise, if they are from different contexts, then it is not
safe, because we may simply be switching to another thread,
and the current thread might still be live (and already on a
scheduling queue).

Implementing callec for the linked strategy is also tricky,
because of the need to support promotion to maintain the
DLG heap invariant for mutable heap-allocated frames. The
challenge again stems from the need to handle an additional
pointer to a frame, which can only be produced via callec.
If a continuation is used for synchronization in CML, then
the continuation must be promoted to the global heap in
order to be enqueued in the channel. During the capture of
a linked frame with callec, we allocate a small continua-
tion launcher that contains a pointer to the frame just as we
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do for the other stack strategies. The difference is that for
linked stacks, the launcher now also serves as a read-barrier
during a throw: the launcher’s code always checks the GC
tag of the frame pointed-to by the launcher, following the
forwarding pointer if needed to find to the correct version
of that frame. Once garbage collection occurs, live launchers
will have their pointed-to frame updated by the GC to the
correct location, removing the indirection on throws.

5 Evaluation

This section provides an evaluation of the six different strate-
gies for implementing continuations discussed in Section 3.6.
We start with an empirical analysis of performance using a
variety of benchmark programs. We then discuss certain
qualitative design trade offs in Section 5.2 and conclude
with some recommendations for compiler developers in Sec-
tion 5.3.

5.1 Performance

We use five different groups of benchmarks to evaluate the
various strategies. The benchmarks are summarized in Ta-
ble 1, with horizontal lines separating the groups. The ma-
jority of the benchmarks were ported from the benchmark
suites of Larceny Scheme [18], the Glasgow Haskell Com-
piler [34], or the SML compilers MLton [46] and SML/NJ [8].

The number of iterations listed for each program is the
number of times the program’s computational kernel was
executed on the input within one trial, which corresponds to
one launch of the compiled program. Unless otherwise noted,
any benchmark running times are reported as the arithmetic
mean of ten trials with 95% bootstrapped confidence intervals
plotted. The running time of a trial is the time it took to
execute the kernel for the given number of iterations; i.e., it
excludes the time to initialize the runtime system, load the
input, etc.

5.1.1 Experiment Setup. All performance data was col-
lected using a lightly-loaded server equipped with two Intel
Xeon Gold 6142 CPUs and 64 GB RAM running Ubuntu
16.04.6 LTS. We compiled all benchmarks for x86-64 with
a modified version of LLVM 9.0.1 that implements addi-
tional function prologues and epilogues that are compatible
with the runtime system. LLVM’s IR optimizations were lim-
ited to tail-call elimination and clean-up (e.g., instcombine,
simplifycfg) to ensure a fair comparison, because LLVM’s
advanced optimizations are better suited for direct-style code.
The production-grade compilers MLton version 20180207
and SML/N]J version 110.96 (64-bit) were also evaluated to
provide context for the performance of our compiler. MLton
is an example of a real-world compiler that uses a resizing
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Table 1. Details for all of the benchmarks. The columns are the benchmark name, lines of code, source benchmark suite,
description, problem size, and number of iterations per run. The benchmarks are divided into recursive, looping, mixed,
continuation, and foreign function groups. A name marked with a star (x) means there is also a version of the benchmark
in the continuation group that uses callec and throw.

Program LOC Origin Description Input (n) Iters (i)
ack x 9 Larceny Compute the Ackermann function (3, 11) 4
divrec 13 Larceny Recursively divide n by two, where n is represented by a 1,000 106
list of length n.
fib x 4 Larceny Recursively find n'® Fibonacci number 40 5
merge 8 MLton Merge two length n sorted lists into one 100,000 150
motzkin x 18 Manticore Find n® Motzkin number 21 4
primes 19 Larceny Compute list of primes less than n 1,000 20,000
quicksort 18 Manticore Quicksort a fixed random-number list of length n 2 % 10° 1
sudan x 11 Manticore Compute the Sudan function F(x, y) (2,2) 107
tak x 9 Larceny Compute the Tak function (40, 20, 11) 1
takl 16 Larceny Compute the Tak function using lists as numbers (40, 20, 11) 1
cpstak 25 Larceny CPS version of tak (40, 20, 11) 1
evenodd x 9 MLton Mutually tail-recursive subtraction loop 5% 108 4
mandelbrot 48 MLton Tail-recursive Mandelbrot set loop (32,768, 2,048) 1
tailfib 4 MLton Tail-recursive version of fib 44 30
barnes-hut 259  SML/NJ Perform i steps of hierarchical n-body solver 400,000 particles 10
deriv 70 Larceny Symbolic differentiation 3x% + ax® + bx + 5 107
life 147 SML/NJ Simulate n steps of two Game of Life grids 25,000 2
mazefun 194 Larceny Constructs a maze in a purely functional way (11, 11) 10,000
minimax 128 Manticore Tic-Tac-Toe solver using Minimax 3 X 3 board 10
nqueens 44 GHC Enumerate the solutions to the n-queens problem 13 2
perm 75 Larceny GC benchmark using Zaks’s permutation generator (5,9) 10
mcray 513 Manticore Functional raytracer; Monte Carlo algorithm 300 % 200 canvas 1
scc 44 GHC Strongly-connected components of n vertex graph 5,000 3
cml-pingpong 20 Manticore Two threads send n messages over a channel 4% 10° 1
cml-ring 20 KRoC A ring of n threads forwarding a message for i cycles 128 15,000
cml-spawn 9 Manticore Fork a new thread and then sync immediately n times 222 1
ec-x The escape-continuation forms of benchmarks from above.
ffi-fib 7 Manticore fib with FFI calls to integer identity function 40 1
fhi-trigfib 12 Manticore fib with FFI calls to trigonometry functions 40 1

stack,> and SML/NJ uses heap-allocated continuation clo-
sures.

Most of the stack strategies have various size parame-
ters that need to be selected. For contig, we used a size of
128 MB, which was the smallest size that could accommo-
date all of the benchmarks without overflowing. The resize
strategy starts with an initial stack size of 8 KB, which was
chosen empirically by first finding the smallest size such
that a larger initial size for yielded no benefit for the deeply-
recursive ack benchmark. The segmented strategy uses a
segment size of 64KB, which was picked because it is 8 times
larger than the initial resize stack. During overflow for a
segmented stack, frames are copied until either a maximum
of four frames or one-eighth of a segment’s data is encoun-
tered. Stack memory was allocated using aligned_alloc

>In contrast to our resizing stack, MLton stack’s grows in the opposite direc-
tion (upwards) on x86-64. Thus, MLton uses jmp instructions for call/return
and does not use push/pop for frame initialization.

as provided by the jemalloc library (Version 3.6). During
program start-up (and prior to running-time measurement),
the segment cache is pre-loaded with 64 free segments if
using resize, segmented, or hybrid strategies.

5.1.2 Recursion Performance. Together the first three
groups of functional benchmarks listed in Table 1 evaluate all
aspects of function call overhead. The first group consists of
recursive benchmarks that exhibit a variety of patterns for
deep recursion where the work performed between each call
is minimal. The second group of benchmarks are referred
to as looping because they exclusively make use of tail
recursion, which does not grow the call stack but does stress
tail-call optimization. The third group consists of mixed
benchmarks that provide a wider variety of workloads that
are more typical of regular programs.
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Figure 3. Speed-up comparison over cps for the recursive
benchmarks.
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Recursive Benchmarks. Figure 3 shows that on average
the contig, segmented, resizing, and hybrid stacks, are sig-
nificantly faster for the recursive benchmarks, exhibiting a
1.38X to 1.46x speedup relative to cps. Linked stacks are
the slowest, seeing a 0.83% speedup, i.e., a 1.2X slowdown
relative to cps.

The ack results are a major outlier, with most strategies
running over 5.2X faster than cps, owing to the program’s
unique pattern of recursion. A typical recursive pattern is
similar to depth-first traversal of a tree; e.g., fib and tak
traverse a space similar to a complete k-ary tree of depth
n, where up to k" calls may occur just to visit the leaves.
While performing fewer calls per iteration (179 million vs 331
million) in comparison with fib, the ack program recurses
much deeper (16,380 frame vs 40 frame maximum depth) and
has a less predictable recursion pattern [60].

For smaller inputs, ack has a peak-and-valley pattern of
recursive depth history, making it a nightmare scenario for
the linked and cps strategies, which that allocate directly
in the heap: 67% of running time for these two strategies was
spent in the garbage collector, while for the other strategies
it was less than 2%. For cps, 24 GB of data was allocated in
the nursery, with 65.6% of that being copied to the old space
and 40% later copied to the global heap. The linked strategy
saw similar rates of live-data copying, but even with frame
reuse, it still allocated 2.7 GB more data in the heap than the
cps strategy.

Beyond the large differences in performance, one take-
away is that the resize strategy is slightly more efficient
on average than segmented or hybrid. This difference is
primarily owed to the fact that a resizing stack turns into a
contiguous stack on-demand. In contrast, a segmented stack
does not adapt to program behavior, leading to a high num-
ber of segment-overflow events in some cases. For example,
the segmented strategy handles 349,103 overflow events
for ack and 32,020 for quicksort, compared with 7 and 14
(resp.) for the resize strategy. While the hybrid strategy is
adaptive, its design goal is to reduce memory overhead for
the situation where there are large numbers of small threads
that can run in relatively small stacks.® It might make sense,
however, to use larger segments for the hybrid strategy,
since they are only used when the computation has already
exhibited fairly deep recursion.

Looping Benchmarks. For the looping benchmarks, cps
matches the other strategies on average (Figure 4). Most
of the stack-based strategies perform the same, which is ex-
pected since these tests do not stress stack allocation, though
there are a few programs here with unusual results.

®This pattern is typical of many programs in languages like CML, ERLANG,
and Go.
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Figure 4. Speed-up comparison over cps for the looping
benchmarks.

The central piece of the mandelbrot benchmark is a
triply-nested tail-recursive loop, where the inner two func-
tions reference free variables, requiring many closure alloca-
tions. When closure conversion is applied to mandelbrot
without direct-style translation, our compiler allocates an
extra closure for the return-point of an inner tail-recursive
function. When direct-style conversion is enabled, it elimi-
nates such a heap-allocation, which explains why all of the
strategies that use the conversion have equal performance
for this particular benchmark. It is possible that a more so-
phisticated closure-conversion algorithm would eliminate
this extra allocation in all cases [57].

From a theoretical point of view, one might expect that the
performance should be exactly the same across the board for
benchmarks such as the virtually no-op evenodd because no
frame or heap allocation should be needed. When comparing
the assembly code across the stack-based strategies for cp-
stak, evenodd, and tailfib, the only reason to which we can
attribute the varying results are slightly different basic-block
layout decisions made by LLVM’s code generator, which is
influenced by each strategy’s unique function prologues.

A prologue to allocate a frame is needed in the looping
benchmarks because in our runtime system, preemptions
to handle signals occur at garbage collection safe-points.
Thus even non-allocating tail-recursive loops must contain
a heap-limit test and a possible call to enter the garbage
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Figure 5. Speed-up comparison over cps for the mixed
benchmarks.

collector. Tail-recursion elimination helps ensure that for
stack-based strategies, the frame is only set-up once during
the first iteration of the loop.

Mixed Benchmarks. Figure 5 illustrates the performance
of each implementation strategy for the mixed benchmarks,
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which are more typical of regular programs than the recur-
sive or looping benchmarks. Overall, this experiment demon-
strates is that the magnitude of differences in performance
are muted for the mixed benchmarks; i.e., the speedups only
vary from 0.95X to 1.15X on average relative to the cps
strategy. The general ranking of fastest to slowest remains
roughly the same as with the recursive benchmarks: con-
tig and resize, then segmented and hybrid, cps, and fi-
nally linked. For our largest and most complex benchmark,
mcray, the advantage that resize has over segmented is
virtually erased, and linked actually outperform cps by a
solid margin.

5.1.3 Continuation Benchmarks. Figure 6 shows the
relative speed-ups of benchmarks that make heavy use of
continuations. We did not evaluate MLton for these bench-
marks, because it does not implement callec and its callcc
is too slow. For the three CML benchmarks, SML/NJ performs
significantly better than any of our strategies. We believe
that most of this performance difference can be attributed
to the overhead of promotion required to maintain the DLG
heap invariant. Although we are only using a single VProc
for these experiments, we are paying for the mechanisms
needed to support scalable multicore performance [52].
The cps strategy is far and away the best strategy across
the entire suite of continuation-heavy benchmarks. The next
best strategy is not clear. The linked strategy performs well
for the CML benchmarks because it has an efficient newstack
operation, but it is the weakest strategy for the ec-x group.
The ec-x benchmarks replace some or all call and return
operations with callec and throw, exposing the overhead of
using continuations for non-local control. While based on a
tail-recursive benchmark, ec-evenodd grows the stack very
deeply (nearly 128 MB) because it captures a frame on every
other call while subtracting its input. Segmented stacks fare
better than resizing stacks because continuation capture in
a segment disables the movement of frames owing to the
creation of an external pointer to the stack (Section 4.6).

5.2 Design Trade-offs

In this section, we take a deeper look at different aspects of
performance related to implementation strategies for stacks
and continuations.

5.2.1 Foreign Function Calls. By default, the resize, seg-
mented, and linked strategies use a separate stack for foreign-
function (FF) calls (i.e., a stack-switching shim), whereas
the contig and cps strategies make FF calls directly from
the stack already available. We conducted an experiment to
help gauge the overhead of stack switching with two bench-
marks, fli-fib and trigfib, that use the same fib program
and workload. The integer constants in the original pro-
gram was changed to foreign-function calls that produce the
same value. For fli-fib we call an integer identity function
to emphasize a worst-case scenario. The goal of trigfib is
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Figure 6. Speed-up comparison over cps for the continua-
tion benchmarks.

to call some moderately expensive but common C functions
to understand a realistic scenario. For trigfib, we use the
trigonometric identities sin(r) = 0 and tan(x/4) = 1, which
in our compiler are computed as calls to libm, to produce
the integer constants. The speed-up of having native FFI
calls relative to using a shim for ffi-fib were huge, 2.5% -
2.98x%, but for fli-trigfib the speedup was only 1.01X — 1.05X.
Thus for non-pathological programs, trading off the over-
head for a simpler and more flexible runtime system may be
worthwhile.
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Table 2. Average L1 data-cache read miss-rates.

recursive | looping | mixed | continuation
contig 8.61% 5.84% 8.68% 11.02%
resize 7.75% 543% | 8.44% 9.39%
segmented 7.79% 5.43% | 8.44% 9.45%
hybrid 7.83% 5.42% 8.44% 9.48%
linked 15.22% 8.58% | 12.02% 14.58%
cps 9.76% 9.06% | 11.04% 10.96%

5.2.2 Hardware Stack Support. The x86-64 provides the
call and ret instructions to implement stack-based function
calls and returns. To help understand the benefit of using
these instructions, we compiled our sequential program suite
(Table 1) in two configurations. In one configuration, we
replaced all return instructions in ML functions with an
equivalent pop-jump sequence:

ret — pop %rbx; jmp *%rbx

This rewrite effectively disables the CPU’s return-address
stack, which is an internal bookkeeping mechanism to help
predict the target of a return [13]. After this transformation
the CPU will rely on its indirect-branch predictor, which
levels the playing-field with the cps strategy. We found that
for the contig, resize, segmented, and hybrid strategies,
using the native CPU instructions yields a 1.02x — 1.07x
speedup for the recursive group on average, with fib and
motzkin as consistent outliers seeing a 1.15X — 1.3X speed-
up. Those strategies see a 1.01X — 1.02X speedup for the
mixed benchmarks, and a 1.02X speedup overall across re-
cursive, looping, and mixed groups. Linked stacks saw ef-
fectively no change in performance across the board even
though the implementation uses call and return. Our best
guess as to why is that the frequent movement of linked
frames might be confusing the predictor.

5.2.3 Cache Locality. One of the primary folklore argu-
ments against the cps strategy is that it has poor cache per-
formance because its frames are not reused. To test this,
we use the Linux perf-stat tool to access the CPU’s perfor-
mance monitoring units to obtain L1 data-cache miss-rates
from five complete-process executions for all benchmarks
and stack strategies.

The results are in Table 2. This data suggests that while
the linked and cps implementations have higher miss rates,
the differences are fairly small in most cases. We believe that
other factors also contribute to the performance differences,
such as more frequent garbage collections and more copying
of live data into return continuations.

5.2.4 Tools. In order for developer tools such as debuggers
and profilers to be useful, they must be able to unwind (or
walk) the call stack frame-by-frame to understand the calling
context. Itis a large effort to write such tools for any language
implementation, so compatibility with existing tools like gdb,
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11db, and perf may be helpful to language implementors and
users.

We consider a stack strategy to be highly tool-compatible
if existing tools can unwind the stack solely via frame-pointer
unwinding, which is the quickest way to walk the stack.

Both the contig, resize, and linked strategies easily sup-
port frame-pointer unwinding, with linked stacks providing
full backtraces in Manticore using lldb without any addi-
tional effort.” Our segmented and hybrid strategies would
require some modification to allow the underflow frames to
be parsed. Frame unwinding is not meaningful for the cps
strategy and thus it is not compatible with existing tools.

5.3 Developer’s Manifesto

We found it very difficult to implement efficient segmented
stacks! Initially we thought eagerly freeing segments outside
of a GC cycle on underflow was sufficient, but a number of
additional memory-management optimizations were needed
to improve their performance for callec. In particular, the
interaction between continuation capture and frame move-
ment is subtle (Section 4.6). Segmented stacks also have a
number of tunable parameters both in terms of segment size,
the amount of data copied on overflow, and the limit to set
on the stack cache’s size. For resizing stacks, we found that
the stack-cache lookup operation needed an early-bailout
mechanism for its first-fit search because malloc already
has a better-tuned implementation.

Linked-frame stacks were tricky to implement with a gen-
erational garbage collector designed for immutable objects.
Namely, mutable objects and their transitive references must
normally be promoted to the last generation, in lieu of an-
other write barrier scheme. To allow linked frames in all
generations while supporting continuation capture, when
returning to a captured frame, the metadata left behind by
a promotion is checked for a forwarding pointer before re-
suming (Section 4.6).

From the perspective of the compiler, implementing the
direct-style conversion and using LLVM’s GC infrastructure
were the only major difficulties of getting the stack strategies
to work, but these were only needed as a consequence of our
compiler’s existing design.

The real challenge was in extending the parallel runtime
system, where a whole new thread-safe memory manage-
ment system with caching and a generation-aware mark-
sweep collector was developed and tuned to deal with non-
moving large-objects (i.e., stack regions) for the contig, re-
size, segmented, and hybrid strategies. After implement-
ing a few different custom designs for the allocator, the best
allocator ended up being jemalloc, because it offered good
performance over glibc’s malloc. The mark-sweep collector
then faced performance problems with contiguous stacks be-
cause the bookkeeping data for each stack was initially part

7Our frame pointers may not be monotonic, so gdb does not work.
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Table 3. A comparison of the implementation strategies, where v/ means good, X means bad, and
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is neutral. The first two

rows compare implementation complexity, the next three compare performance, and the remainder compare feature support.

Feature contig | resize | segment | hybrid | linked | cps
Compiler complexity v X v
Runtime complexity X X X X X v
Fast on recursion benchmarks v v v v X X
Fast on looping benchmarks v v v v v

Fast on mixed benchmarks v v v v

Fast on continuation benchmarks X X X X v
Space efficient threads X v v v v
Support for escape continuations v X v v
Support for 1st-class continuations X X v v
Foreign functions v X v
Supports deep recursion X v v v v v
Tool-compatible v v v X

of the stack region itself. Separately malloc-ing the book-
keeping data yielded major cache locality benefits during
the sweep; cml-spawn saw a 5% overall speed-up with this
change.

The other difficulty in the runtime system was with build-
ing a correct and efficient stack walker, because garbage-
collection occurs frequently and was the bottleneck of sev-
eral benchmarks. Correctness challenges came from genera-
tional scanning and understanding the frame-layout meta-
data output by LLVM. We found that the most expensive
part of scanning was the hash-table lookup to identify the
layout of the frame corresponding to the return address.
One optimization we made was to replace a modulo with
a bitwise-and in the hash-function, which led to a 1.25%
speedup for one benchmark.

All of this effort essentially duplicates what the garbage
collector will need to do for normal objects in the heap:
find pointers, tenure objects, and track modifications. It is
certainly the case that the cps strategy is a much simpler
choice for a garbage collected runtime system.

6 Conclusion

If one’s primary concern is sequential performance with-
out advanced control-flow mechanisms, then the contig (or
possibly resize) strategy is clearly the best choice (although
the implementation cost of garbage collection support is
high). In this work, however, we are interested in compilers
for languages that have fine-grain concurrency and/or par-
allelism, or other advanced control-flow mechanisms. For
such languages, there is no simple answer to the question,
“what is the best choice of strategy for my compiler?” It de-
pends on the priorities of the language implementor; Table 3
summarizes the trade-offs between the six implementation
strategies evaluated in this paper.

First, if the ease of implementation in the compiler and
runtime system are of utmost priority, cps is the simplest im-
plementation. It is also well suited to implement concurrency
features without any of the limitations of escape continua-
tions. Its downside is poorer sequential performance® and
the fact that it is not compatible with existing tools that
expect a traditional call stack.

While the resize, segmented, and hybrid strategies share
much of the same implementation overhead and characteris-
tics, a resizing stack is the better choice because of its space
efficiency. The segmented stack is not space efficient because
the segment size is constant and constrained by the efficiency
of the overflow and underflow handlers. Whereas we can
pick a small initial size for a resizing stack with the knowl-
edge that with only a few overflows, it will become large
enough to support the program’s full call stack. If we were
going to reimplement the Manticore system from scratch,
we would give serious consideration to the hybrid strategy.

Finally, we conclude that the linked strategy should al-
ways be avoided in favor of other approaches, because the
mutability of linked-frames is more of a curse than a benefit
relative to cps.
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