
Compiling with Continuations and LLVM

Kavon Farvardin
University of Chicago

kavon@cs.uchicago.edu

John Reppy
University of Chicago
jhr@cs.uchicago.edu

1. Introduction
Maintaining a native code generator that targets multiple architec-
tures is a hassle for compiler writers that requires expert knowl-
edge of each new processor’s quirks. Some functional language
compilers avoid this problem by targeting C as a “portable as-
sembly language” [9, 15], but this approach has significant draw-
backs in both compile-time and runtime performance. More re-
cently, LLVM [10], which provides a low-level SSA-based repre-
sentation with many available optimization passes, has emerged as
a popular backend for compiler writers. Although designed with
imperative and object-oriented languages as its expected clients,
LLVM has been used to build backends for functional languages,
such as Standard ML [12], Haskell [16], and Erlang [14]. While
LLVM addresses the problem of maintaining native code genera-
tors and is a better portable assembly language than C code, it still
suffers from a bias toward C runtime conventions, which makes it
a less than ideal target for a functional-language compiler. Func-
tional language implementations often use specialized register and
calling conventions,1 and require guaranteed tail-call optimization,
mechanisms to communicate with the garbage collector, and effi-
cient support for features like first-class continuations.

In this paper, we present our approach to solving the problems
of using LLVM as a backend for functional language implemen-
tations. In particular, we show how to use LLVM to support the
heap-allocated first-class continuation runtime model [4] used by
the SML/NJ system and by the Manticore system [7]. We have in-
tegrated our approach into the Parallel ML (PML) compiler that is
part of the Manticore project [7]. Initial observations suggest that
the LLVM backend produces more efficient code relative to the pre-
vious MLRisc [8] backend.

The LLVM backends for Haskell (GHC) and Erlang (ErLLVM)
use special language-specific calling conventions added to LLVM
that support TCO. The LLVM backend for the MLton SML com-
piler uses trampolining to avoid the issues with TCO. As far as
we know, no one has successfully implemented first-class contin-
uations with LLVM. In the remainder of the paper, we describe a
new calling convention that we have added to LLVM, how we han-
dle the GC interface, and how we support capturing continuations
to support preemption. Many details are omitted because of space
limits, but can be found in an upcoming technical report [5].

2. Proper Tail-Call Optimization
Most functional languages use tail recursion to express loops and,
thus, require that tail calls do not grow the stack. In limited circum-
stances, LLVM can meet this requirement, but even when LLVM
is able to apply TCO to a call, there is extra stack-management
overhead on function entry and exit [1–3]. This extra overhead is
bad enough for implementations that rely on traditional stacks, but

1 For example, many implementations dedicate a specific register as an
allocation pointer to support efficient open-coding of heap allocation.

it is prohibitively expensive for implementations that use CPS and
heap-allocated continuations [4].

A standard technique to avoid this overhead is to merge mutu-
ally tail-recursive functions into a single LLVM function and then
use internal jumps instead of tail calls. Unfortunately, this approach
does not work for tail calls to unknown functions and incurs sub-
stantial compile-time cost. The MLton SML compiler partitions the
generated code into multiple large functions (called chunks) and
uses a trampoline to transfer control between chunks [12]. This ap-
proach solves the compile-time issue, but places extra strain on the
register allocator because of the nature of the control-flow graphs
in the chunks.

Our solution to this problem is to add a new calling conven-
tion, which we call Jump-With-Arguments (JWA), to LLVM. This
calling convention has the property that it uses all of the available
hardware registers and that no registers are preserved by either the
caller or callee. Furthermore, the argument registers are exactly the
live registers on return (i.e., the call and return have identical reg-
ister use conventions).2 Second, we mark every function with the
naked attribute, which tells the code generator to completely skip
the emission of a function prologue and epilogue. This attribute
must be used with care; it was originally designed to support func-
tions consisting entirely of inline assembly that manages the stack
explicitly (e.g., interrupt service routines). Using the naked attribute
means that the generated code is responsible for ensuring that there
is sufficient stack space for register spills. We use an assembly lan-
guage shim for switching between the runtime system code (writ-
ten in C) and the code generated by the PML compiler. This shim
code allocates a frame that is large enough to handle the maximum
number of register spills.3

3. Allocation and Garbage Collection
Our JWA calling convention maps function arguments to hardware
registers based on the position of the argument. By using standard
positions for special runtime registers, we can effectively pin them
to hardware registers (e.g., we always pass the allocation pointer as
the first argument). Object allocation then defines new instances of
the allocation pointer, which thread the current state of the pointer
through the code (recall that LLVM code is in SSA form).

One of the advantages of CPS with heap-allocated continua-
tions is that the interface to garbage collection is very simple. The
runtime does not need to scan a stack (since there is no stack) or
understand any other properties of the code generator. We did not
have to make any modifications to our existing collector to support
our LLVM backend.

2 These properties are why we need to create a new convention, instead of
using an existing convention.
3 This technique is borrowed from the SML/NJ system; the spill limit is
enforced by the compiler limiting the number of live variables at any control
point.

1 declare jwa {i64* , i64*} @invoke-gc(i64* , i64*)
2

3 define jwa void @foo(i64 allocPtr_0 , ...) naked {
4 ...
5 if enoughSpace , label continue , label doGC
6

7 doGC:
8 roots_0 = allocPtr_0
9 ; ... save live vals in roots_0 ...

10 allocPtr_1 = getelementptr allocPtr_0 , 5 ; bump
11 retV = call jwa {i64* , i64*}
12 @invoke-gc(allocPtr_1 , roots_0)
13 allocPtr_2 = extractvalue retV , 0
14 roots_1 = extractvalue retV , 1
15 ; ... restore live vals ...
16 goto label continue
17

18 continue:
19 allocPtr_3 = phi i64* [allocPtr_0 , allocPtr_2]
20 liveVal_1 = phi i64* [...]
21 ...

Figure 1. An example of a compiler generated safe point for
garbage collection.

The compiler is responsible for generating code to check for
heap exhaustion and code to invoke the GC when necessary. In
Figure 1, we list simplified LLVM code for the heap-limit check
(Lines 4–5) and GC invocation. To invoke the GC, we first save the
live variables into a heap object (Lines 8–10) and then do a non-tail
JWA call to @invoke-gc. When this function returns, we restore the
allocation pointer and live variables (Lines 13–15).

We use a non-tail call to @invoke-gc for reasons described in
below in Section 4. We ensure that LLVM does not try to preserve
values across the @invoke-gc call by taking advantage of the rules
about aliasing. Once the pointer reaching all live values is passed
to @invoke-gc, which is an external function not visible to LLVM,
LLVM must assume that all values may have changed and must
use the updated versions from the pointer returned.

4. Preemption and Multithreading
The main motivation for supporting heap-allocated first-class con-
tinuations is to enable the efficient implementation of the concur-
rency mechanisms in the Manticore runtime system [6, 11]. While
the mechanisms described in Section 2 are sufficient to support the
explicit management of continuations, preemptive scheduling re-
quires capturing continuations that are not explicit in the interme-
diate code. We use the technique developed for supporting asyn-
chronous signals in SML/NJ [13], which limits preemption to safe
points where all live values are known. Specifically, those places in
the code where we perform a heap-limit check serve as safe points.4

We store the heap limit pointer in memory, which means that we
can set it to zero when we need to force a heap-limit check to fail.
The runtime system then constructs a continuation closure, which
is passed to the preemption handler where it can be put on schedul-
ing queue etc.

This mechanism introduces an additional challenge for our
LLVM backend, because the implicit continuations that are cap-
tured during preemption do not correspond to LLVM functions and
are invoked from unknown locations. For example, consider the
heap-limit test in Figure 1. If it is invoked to force a preemption,
then a continuation will be created by the runtime system that has
Line 13 as its code address (i.e., the return address of the call to

4 The code generator ensures that even non-allocating loops contain a heap-
limit check.

Sp
ee

du
p

(n
or

m
al

ize
d)

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

life nbody queens quicksort takeuchi

0.86
1

1.12

2.15

1.08

0.86
11

2.15

1.09 1.051.01
1.08

2.12

1.08

0.87
1

1.07

2.13

1.09 1.08
11.02

2.11

1.07 1.07
10.99

2

1.08

No Passes "Basic" Passes "Extra" Passes -O1 -O2 -O3

Figure 2. Execution time speedups when compiled with LLVM,
normalized to MLRisc. Each bar represents a different set of addi-
tional optimizations applied when compiling with LLVM.

@invoke-gc). Since Line 13 is not a function entry, there is no way in
LLVM to specify a calling convention.

We are saved, however, by the fact that we can specify our own
return convention for structs in LLVM. Normal conventions return
a struct using a mix of registers or stack space that does not match
up with the way arguments are passed to functions. We setup our
JWA convention so that struct field i is returned in the same register
that argument i would be passed in during a call. This way, return
addresses generated through a non-tail JWA call can be jumped to
safely using a standard JWA tail call (which is how we throw to a
continuation!).

5. Evaluation
We measured the difference in application performance between
our two backends to get a sense of how well LLVM can handle the
unusual code we generate. Figure 2 summarizes our experiment
conducted on a MacBook Pro with an i7-4850HQ processor. Each
benchmark was compiled with different sets of additional LLVM
optimization passes applied before generating assembly:

Basic: Hand-picked optimizations that contract functions into a
form the LLVM code generator might normally expect.

Extra: Basic optimizations + memory-operation vectorization and
movement.

-Ox: These are the default optimization levels built into LLVM.

LLVM’s code generator outputs much better assembly than
MLRisc for the floating-point-heavy nbody benchmark. While the
takeuchi benchmark only tests the overhead of recursion, its per-
formance takes a hit with LLVM because of the slp-vectorizer
pass. After the pass is applied, the hot path is smaller because of the
use of vector instructions to initialize a closure, but the execution
cost of such instructions outweighed the size benefit.

6. Conclusion and Future Work
We have outlined how to extend LLVM to support the heap-
allocated first-class continuation runtime model. We are in the
process of replacing the MLRisc backend with LLVM using the
approach described in this paper. Initial observations suggest that
this new LLVM backend produces smaller and more efficient code.
We are also hoping to apply these techniques to the SML/NJ system
in the future.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation under Grant CCF-1010568. The views and con-
clusions contained herein are those of the authors and should not

Compiling with Continuations and LLVM 2 2016/9/8

be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of these organizations
or the U.S. Government.

References
[1] LLVM Bug 13826 - unreachable prevents tail calls. https://llvm.

org/bugs/show bug.cgi?id=13826, 2012.
[2] LLVM Bug 23470 - Inefficient lowering of ’musttail’ call . https:

//llvm.org/bugs/show bug.cgi?id=23470, 2015.
[3] LLVM Bug 23766 - musttail calls are not allowed to precede unreach-

able. https://llvm.org/bugs/show bug.cgi?id=23766, 2015.
[4] A. W. Appel. Compiling with Continuations. Cambridge University

Press, 1992.
[5] K. Farvardin and J. Reppy. An LLVM backend for Manticore. Tech-

nical Report Number Pending, Dept. of C.S., U. of Chicago, Chicago,
IL, 2016.

[6] M. Fluet, M. Rainey, and J. Reppy. A scheduling framework for
general-purpose parallel languages. In ICFP ’08, pages 241–252, New
York, NY, Sept. 2008. ACM.

[7] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded
parallelism in Manticore. JFP, 20(5–6):537–576, 2011.

[8] L. George, F. Guillame, and J. Reppy. A portable and optimizing back
end for the SML/NJ compiler. In CC ’94, number 786 in LNCS, pages
83–97, New York, NY, Apr. 1994. Springer-Verlag.

[9] S. P. Jones, N. Ramsey, and F. Reig. C - -: A Portable Assembly
Language that Supports Garbage Collection. In PPDP ’99, pages 1–
28. Springer-Verlag, New York, NY, 1999.

[10] C. A. Lattner. LLVM: An infrastructure for multi-stage optimization.
Master’s thesis, University of Illinois at Urbana-Champaign, 2002.

[11] M. Le and M. Fluet. Partial aborts for transactions via first-class
continuations. In ICFP ’15, pages 230–242, New York, NY, Sept.
2015. ACM.

[12] B. A. Leibig. An LLVM Back-end for MLton. Master’s thesis,
Rochester Institute of Technology, 2013.

[13] J. H. Reppy. Asynchronous signals in Standard ML. Technical Report
TR 90-1144, Dept. of CS, Cornell University, Ithaca, NY, Aug. 1990.

[14] K. Sagonas, C. Stavrakakis, and Y. Tsiouris. ErLLVM: An LLVM
backend for Erlang. In ERLANG ’12, pages 21–32, New York, NY,
2012. ACM.

[15] D. Tarditi, P. Lee, and A. Acharya. No Assembly Required: Compiling
Standard ML to C. ACM LOPLAS, 1(2):161–177, June 1992.

[16] D. A. Terei and M. M. Chakravarty. An LLVM Backend for GHC. In
HASKELL ’10, New York, NY, Sept. 2010. ACM.

Compiling with Continuations and LLVM 3 2016/9/8

https://llvm.org/bugs/show_bug.cgi?id=13826
https://llvm.org/bugs/show_bug.cgi?id=13826
https://llvm.org/bugs/show_bug.cgi?id=23470
https://llvm.org/bugs/show_bug.cgi?id=23470
https://llvm.org/bugs/show_bug.cgi?id=23766

	Introduction
	Proper Tail-Call Optimization
	Allocation and Garbage Collection
	Preemption and Multithreading
	Evaluation
	Conclusion and Future Work

