
Spread-Spectrum Organization for Concurrent Pools

Kavon Farvardin
University of Chicago

kavon@cs.uchicago.edu

John Reppy
University of Chicago

jhr@cs.uchicago.edu

ABSTRACT
A lock-free concurrent pool (bag) data structure that is sim-
ple to implement, yet has performance competitive with the
much of the prior work, is presented. The pool offers a flexi-
ble pseudo-priority functionality that takes advantage of the
unordered semantics of a pool. Consumers can define a set
of item categories for which they have a ranked affinity for,
and these items are discovered using a new temporal organi-
zation technique called spread-spectrum organization, which
is inspired by solutions for signal multiplexing in radio com-
munications.

1. INTRODUCTION
A pool (bag) is a data structure with two operations:

put, which adds an element to the pool, and get, which
removes and returns an arbitrary element from the pool.
Lock-free pools are widely used in parallel programs, often
serving the rôle of a central work queue or resource cache for
heavy duty computations in machine learning, data mining,
and NP-hard optimization problems [32]. While many data
structures satisfy the interface of a pool, an underlying im-
plementation with strict ordering, such as first-in first-out
(FIFO) and priority queues, quickly becomes a sequential
bottleneck. Contention in an ordered concurrent data struc-
ture is very difficult to eliminate [6], thus the focus across
much of the literature has been on relaxing the semantics of
the operations for use in algorithms where strict adherence is
not required [4, 5, 15, 26, 25]. Thus, many specially designed
lock-free pools have been developed to to reduce contention
by distributing concurrent operations across many smaller
data structures [13, 29, 7, 2, 14, 10].

Prior work in lock-free pools has mainly focused on min-
imizing latency by keeping the load among all locations
evenly distributed using approaches such as round-robin [10,
14] or random [7, 2, 14] item insertions and removals. Among
the most scalable pools, such as those by Gidron et al (SALSA)
[13] and Sundell et al (CB) [29], the design is such that a
fixed number of threads normally operate on their own sub-

Under consideration for SPAA ’16

regions of the pool, and resort to work-stealing in case of
imbalance. Work-stealing schedulers have proven to be ef-
fective at reducing synchronization and improving memory
locality, but they were not designed with respect to the se-
mantics of a linearizable [16] pool data structure that must
observe total emptiness. Thus, in order to take advantage
of work-stealing’s benefits and still be linearizable, both the
SALSA and CB pool get operations require considerable
effort to implement correctly, which impedes their adop-
tion. For example, in higher-level languages with concur-
rency support such as Manticore [12], Haskell, or Java, the
runtime system typically lacks proper support for the forced
CPU scheduling suspension technique, originally proposed
by Dice et al [9], that is used in SALSA to elide synchro-
nization for the steal-free path1.

Contribution We propose a simple, scalable lock-free
concurrent pool that achieves performance competitive with
more complex and hard-to-implement designs. Our pool
can be implemented using lock-free data structures already
available in many standard libraries. Additionally, our pool
exposes an item prioritization functionality directly to the
user. The user can define a dynamic set of categories into
which certain types of items can be placed and later sought
out according to a priority distribution. We do this without
priority queue sub-structures, as they would undermine the
performance expected of a pool.

Our motivating use case for a pseudo-priority pool is to
allow items in the pool to be organized and retrieved based
on their memory locality relative to each retriever. This
is particularly important for non-uniform memory access
(NUMA) architectures, where memory performance has costs
according to a distance function.

The key design difference with respect to prior work is
that we do not ascribe to a spatial binning and search which
organizes items in the pool according to their type, such
as its location in the memory hierarchy or coming from a
particular thread, to elide the need to do work-stealing for
balancing. Instead, we use a novel temporal organization
technique called spread-spectrum organization that achieves
item binning and selection in a reliable and efficient way.
Spread-spectrum organization is inspired by a solution to
an analogous signal multiplexing problem in radio commu-
nications.

1A newer technique has emerged but is not general [23].

2. BACKGROUND

2.1 Related Work
Data structures that do not relax ordering requirements

when used as a pool have poor scalability. Dedicated pool
designs such as the Café pool by Basin et al [7], which is
based on a list of trees, and the ED pool by Afek et al [2],
which applies an elimination technique to cancel out simul-
taneous put and get operations, also have limited scalability.

More recent pools, such as MultiLane by Dice and Otenko
[10] and Distributed Queues (DQ) by Haas et al [14] both
use a work-sharing principle similar to ours, though they lack
the pseudo-prioritization capability proposed in this work,
which can be used to improve memory locality. MultiLane
uses fetch-and-add atomic operations to update cursors,
and while we also have the concept of a cursor, ours are
private and we use many of them.

The highly scalable pools proposed by Sundell et al (CB)
[29] and Gidron et al (SALSA) [13] both use work-stealing
with independent sub-pools, and as mentioned in the intro-
duction these are also quite complicated designs to imple-
ment in practice. Our goal in this work is to have perfor-
mance competitive with these designs without complexity;
our entire data structure spans less than 100 lines of very
straightforward C++ code.

While priority pools are not a new concept [17], nor are
relaxed priority queues [5, 25], our work differs in that we
do not offer a delete-min operation in the traditional sense.
In the relaxed priority queue MultiQueue, while items are
inserted at random, delete-min locks two queues and com-
pares the head elements, removing and returning the one
of lower cost. In our design, we always take the first item
touched in the pool, making a simple decision to improve
our later guesses after the item has been removed. Extra
hesitation may put scalability with respect to state-of-the-
art pure pools in jeopardy. Our pseudo-prioritization comes
from the ability to improve these first-guesses by tracking
down where desirable items live, as we will see in the next
section.

2.2 Spread-Spectrum Organization
In radio communication a frequency spectrum needs to be

shared among multiple users in such a way that simultaneous
broadcasts avoid causing electromagnetic interference. Two
techniques used to effectively share a frequency spectrum
are Frequency Division Multiple Access (FDMA) and Code
Division Multiple Access (CDMA).

0

1

2

3

0

1

2

3

0

2 3

3

1

0

1

0

1

2

3

2

0

1

2

3

Sp
ac

e

Time

FDMA CDMA

Figure 1: Two multiplexing techniques used in radio sys-
tems. CDMA uses jump sequences to track signals.

As its name suggests, in an FDMA system the frequency
spectrum is divided up and each piece is used for separate
conversations. CDMA systems on the other hand mix the

conversations across the entire spectrum, using unique mix-
ing patterns to represent each conversation. Each pattern
is essentially a pseudorandom closed walk that visits each
point in the spectrum, but because the walk is known to all
parties in the conversation, listeners can follow speakers in
the same direction as they jump around [28, 30]. To an ob-
server outside of the conversation, this random jumping is
indistinguishable from uniform random noise, which is why
spread-spectrum systems are resilient in the presence of a
signal jammer, whether benign or malicious.

The analogy to lock-free pool designs is that work-stealing
pools are similar to an FDMA system: threads effectively
own one spatial location, or bucket, in a fixed partitioning
of the pool, and in the case where items are not found, the
threads look elsewhere, which is like fiddling with the radio
dial. In this work we propose a pool that based on the idea
of CDMA systems where we have a fixed number of virtual
buckets users can assign their own meaning to. These virtual
buckets are represented using a pseudorandom insertion and
removal sequence that producers and consumers follow to
track each other with good probability, which we show em-
pirically in Section 4.0.2. In terms of load balancing, when
a producer is overactive, it is effectively contributing extra
noise uniformly across the data structure to all consumers,
even those trying to listen for other items.

3. THE CDMA POOL
In this section we apply the ideas of spread-spectrum or-

ganization to develop a simple lock-free pool.

3.1 Data Types

3.1.1 The Pool
The primary component of the pool is an array, Q, of

length period, that consists of initially empty non-blocking
(lock-free) LIFO or FIFO queues. The main requirement of
these individual queues is that they preserve the order in
which items are inserted and removed, as we use this timing
to synchronize producers and consumers in spread-spectrum
organization technique. We will consider Treiber’s lock-free
stack [31] for the LIFO queue and Michael and Scott’s lock-
free FIFO queue [21] in this paper because they are ubiqui-
tous and easy to implement. In Section 4 we will see that
these less sophisticated queues work well because contention
is effectively eliminated.

type CDMA_Pool <QueueType > {
QueueType Q[period];
int mult; // LCG multiplier
int buckt[numBkts]; // LCG increments
int maxDwell; // max time at any location

}

The period is a power of 2 greater than 4 and numBkts ≤
period

2
for reasons described in Section 3.1.2. In order to im-

plement the signal tracking scheme for our buckets, we need
the ability to distinguish items belonging to each bucket.
Thus, we mark items as they are inserted into the pool with
a bucket ID by marking the queue node it is placed in. The
marking can be done by simply adding another integer field
to each node or wrapping the item’s type to include the extra
value.

3.1.2 The Buckets
While spread-spectrum systems typically use a linear-feedback

shift register to generate a pseudorandom number sequence,
we will be using a linear congruential generator (LCG),
which is given by the recurrence

ni+1 = (a ni + c) mod p

where a is called the multiplier, c the increment, and n0 the
seed; all of which are strictly less than p, the period. We
use LCGs in particular because they have useful properties2

that we take advantage of in order to quickly compute the
paths taken by each producer instead of taking up memory.

We say that a pseudorandom number generator has a full
period if every integer in the interval [0, p) is generated ex-
actly once after p iterations of the generator, given any initial
value. A full period is needed by our algorithm so that our
get operation is linearizable. An LCG has a full period if p
is a power of two that is at least 4, a ≡ 1 (mod m), and c is
any odd number such that 0 < c < p [18].

Observation 3.1. Let the family Fp,a be the set of LCGs
generated by choices of c when we fix p and a. Then for all
sequences r, s in Fp,a where r ≠ s, for every i, if ri = si then
ri+1 ≠ si+1.

Proof. Let c and d be the constants which define r and
s and WLOG assume c < d. For any x, ax + c ≡ j ≢ ax + d
(mod p) because c, d < p.

The significance of Observation 3.1 is that, even if we
pick pathological constants for an LCG or significantly re-
duce its period length and thus its apparent randomness,
the sequences within any family Fp,a relative to each other
are still unique and have the contention spreading qualities
for which random number generators are used in concurrent
data structures. Namely, these sequences exhibit behavior
very similar to the balancers in diffracting trees [27] where,
after two threads have arrived at a common place, they will
leave towards two opposite parts of the data structure. In
our case, when different bucket users meet at a common lo-
cation, their sequences dictate that their next locations will
always be different.

3.1.3 The Users
Each user of the pool maintains its own context, whether

the user is a consumer or producer. These contexts act as
cursors that are continuously adjusted to keep in sync with
the bucket items being tracked without extra communication,
and are kept in thread-local storage since they are private3.
For example, if a thread is self-communicating, or simul-
taneously sending items to two buckets, then two contexts
would be used by that thread.

type PoolContext {
int bktID; // subscribed bucket
int loc; // current location
float dwell; // time left at loc
float penalty[numBkts]; // time penalties

}

2Notwithstanding their “gross” lattice structure [19].
3Conceivably contexts could be shared in order to build a
dynamic bucket allocation system. We have not yet pursued
this idea.

3.2 Pool Operations

3.2.1 Put
The put algorithm is shown in Figure 2. It should be

thought of as part of an iterated process to place items in
the pool such that its pattern is distinguishable and avoids
contention. Using the machinery from Section 3.1.2 the put

operation’s unique pattern given a context is easy to com-
pute. The next function on line 3 of Figure 2 computes
the next value in the LCG sequence defined by the multi-
plier and period for the particular pool operated on, given
the subscribed bucket’s unique increment and the current
location.

A key concept we borrow from CDMA systems is dwelling
at each location for a short period of time, which we think of
as the number of operations performed before jumping to an-
other place, as the group of similar items being spread about
the pool act as a signal synchronization point for tracking.
An illustration of this process is depicted in Figure 4a, where
the dwell time was set to 4 and the producer’s next put oper-
ation will cause a jump to the next location before inserting
the item.

Input: The user’s context (cxt) and the item.
1: if cxt.dwell ≤ 0 then
2: cxt.dwell ← maxDwell
3: cxt.loc ← next(cxt.loc, cxt.incr)
4: end if
5: Q[cxt.loc].insert(item, cxt.bktID)
6: cxt.dwell ← cxt.dwell - 1
7: return

Figure 2: Place an item into a CDMA pool. Dwelling is
used to create pockets of items from the same bucket.

Note that we tag the items as they are placed in the queues
in order to guide consumers as they retrieve items without
further thread communication. In Figure 4b we see that the
producer’s remaining dwell time is 2, yet its two prior items
placed at that location as well as one item tagged with a
different bucket ID, were picked up by the consumer that
has now passed by.

3.2.2 Get
The get operation is where item tracking and prioritiza-

tion takes place, and it is shown in Figure 3. The algorithm
can be broken up conceptually into two parts: searching and
tuning.

The search loop on lines 7-19 starts off with an initial
guess that is determined by the user’s context on line 5. On
each iteration of the loop we attempt to remove an item
from the queue. In the case of the queue being empty, the
version of the empty queue as it was observed during the
removal operation is saved locally. The queue version values
serve to prevent the ABA problem when it comes to the
emptiness verification loop on lines 20-26. For an MS queue
or Treiber’s stack, the queue version values are just the ABA
counter values their standard implementation uses. This
local versioning technique was adapted from Haas et al’s
pool [14] for linearizability, which we discuss in Section 3.2.3.

The tuning takes place on lines 1-4 and 9-16. On line 14
we inspect the removed item’s bucket ID to determine what
time deduction we should make for the current location. The
time deduction for an item of the same bucket as the user’s

Input: The user’s context (cxt).
Output: Some item, or None if it is empty.
1: if cxt.dwell ≤ 0 then
2: cxt.dwell ← maxDwell
3: cxt.loc ← next(cxt.loc, cxt.incr)
4: end if
5: idx ← cxt.loc ▷ initial guess
6: start :
7: for i = 0 . . . (period - 1) do
8: res ← Q[idx].remove()
9: if res.foundAnything then

10: if cxt.loc ≠ idx then ▷ somewhere new
11: cxt.dwell ← maxDwell
12: cxt.loc ← idx
13: end if
14: cxt.dwell ← cxt.dwell - cxt.penalty[res.bktID]
15: return res.item
16: end if
17: chk[i] ← res.version ▷ remember ABA counter
18: idx ← next(idx, cxt.incr)
19: end for
20: for i = 0 . . . (period - 1) do ▷ emptiness check loop
21: ver ← Q[idx].version()
22: if chk[i] ≠ ver then
23: goto start ▷ Q[idx] changed, try a removal!
24: end if
25: idx ← next(idx, cxt.incr)
26: end for
27: return None

Figure 3: Remove an item from a CDMA pool. Tracking of
a bucket is done through the adjustment of the dwell time
and prioritization through custom time penalties.

context is always set to 1 to match the producers. The
time deductions for the other items is where we are afforded
prioritization flexibility because we can assign meanings to
the items in the buckets and then corresponding penalties.
The get operation is depicted in Figure 4 where in part (a)
the consumer is correctly tracking the producer because its
dwell time is 1 and there is one item from bucket 2 left for
it to pick up.

In part (b) of Figure 4, during the time the consumer
spent performing get operations, the producer performed
only two more put operations, leaving the producer with a
remaining dwell time of 2. Observing only 2 of the expected
4 items, the consumer unexpectedly picks up an item from
bucket 1. The penalty for doing so was equal to maxDwell,
which represents an infinite penalty, and caused an early
jump. The consumer will perform an early jump again after
the consumer’s next get operation.

The early jumping by the consumer after losing sync with
a producer that was too slow in comparison achieves load
balancing in a CDMA pool. More active producers for dif-
ferent buckets will have spread their items in such a way
that it appears as a uniform mix to others, and early jump-
ing becomes a means of sampling from this distribution until
the desired items are found again.

Compressing ABA Counters.
Locally saving ABA counter values during the get oper-

ation might become a performance issue if the number of
queues to check becomes large. At the highest levels of par-

bucket 2
dwell = 1

C

bucket 2
dwell = 0

P

2

2

2

2

…

1

1

1

1

2

2

2

2

2

2

2

2

2

0

0

0

2

2

2

2

1

1

3

3

3

bucket 2
dwell = 0

C

bucket 2
dwell = 2

P

1

1

1

0

0

0

13

3

3

0

0

0

0

0

(b)
(a)

Q[

…Q[

…

0

Figure 4: CDMA pool operation using LIFO queues. In (a)
the producer has left a trail of values and in (b) the consumer
catches up and passes the slower producer.

allelism, optimal performance is seen using a larger number
of queues, such as 1024 (Section 4.0.2). In a real-world ap-
plication where the pool happens to be mostly empty, saving
8-byte ABA values can mean writing to 8KB of stack space4,
potentially causing extra L1 cache pressure. Our solution is
to use a cyclic-redundancy check (CRC) [24] that is available
on conventional x86 processors supporting SSE 4.2 and on
the ARMv8. For the x86, the CRC instruction implements
CRC-32C and has a latency of 3 clock cycles on Intel’s pro-
cessors since Sandy Bridge [1] so it is quite cheap.

Instead of storing each individual ABA value in the chk

array on line 17 of Figure 3, we can fold two or more val-
ues at a time using a CRC and just store the one value,
cutting memory usage by at least one half. The emptiness
check loop would be augmented to recompute the current
CRC values, rewinding to the last check point before the
part of the subsequence where the CRC value mismatched.
The rewinding can be performed by simply remembering the
last checkpoint, or in the case of high compression where a

4Our specific implementation uses 2-byte ABA counters
stuffed in the upper part of each pointer value, so it is not
an issue for us.

rewind may go too far, a random position in a sub-interval
of an LCG sequence can be computed in O(log(period))
iterations using the jump-ahead algorithm by Brown [8].

3.2.3 Pool Correctness
We claim that our pool is correct with respect to the se-

mantics of a lock-free pool. Our pool is lock-free because
(1) the underlying queues are lock-free and (2) the get op-
eration only gets stuck in a loop if an ABA counter changed
on the verification pass on lines 20-26 in Figure 3, but such
a counter changes if and only if an enqueue operation suc-
ceeded, thus at least one thread made progress. Lineariz-
ability follows from Haas et al’s pool [14], where we confirm
that the pool was empty at some point by checking the ABA
counters. The intuition behind the proof is similar to check-
ing if a city street is empty before crossing it by looking
left-right-left for cars. If no cars were seen approaching in
all three looks then the street was empty at some point.

4. EVALUATION
This section details experiments we carried out to help

understand the performance tradeoffs and characteristics of
the pool proposed in this work. Our experiments were con-
ducted on a Linux machine equipped with 60GB of memory
and two Intel Xeon E5-2697’s, both of which have 12 cores
that support 2 threads each, yielding 48 hardware threads
total. All code5 was written in C++ and compiled with
GCC 4.8.1 using the same aggressive optimization flags. We
also replaced glibc’s memory allocator with the more effi-
cient jemalloc [11] and all efforts were made to minimize
memory allocator overhead for all algorithms tested in order
to emphasize their design choices. The pools we evaluated
are

● CDMA & CDMA (FIFO) The pool presented in
this work, which we default to using LIFO queues, but
we also test a version using FIFO queues. The period
size was fixed at 2048, dwell time at 64, and the dwell
penalties set to 1 for the same bucket and infinity for
the rest so that we match one producer up with one
consumer. We separately investigate the CDMA pool
parameter space in Section 4.0.2.

● SALSA The pool by Gidron et al [13]. We use their
implementation along with its optimal parameters of
200 preallocated chunks, which are array-like queue
nodes, and 1000 items per chunk.

● CB The pool by Sundell et al [29]. Our implementa-
tion is based on the version used by Gidron et al in
their evaluation of SALSA, but we fixed a bug in the
linearizable emptiness condition. We use a chunk size
of 128 and preallocate 200 chunks, which gave the best
performance.

● DQ The most performant pool by Haas et al [14] that
uses a random load balancer (1-RA), using the their
implementation. Setting the number of queues to 80
showed the best performance.

● LCRQ The FIFO queue by Morrison and Afek [22]
using their implementation and a ring size of 217. We

5Available at https://bitbucket.org/kavon/bonnenuit

include LCRQ as our baseline for peak performance
expected of a single FIFO queue when used as a pool.

For the implementations of DQ, CDMA, and LCRQ, queue
nodes are bump allocated in large (32MB) blocks of mem-
ory to reduce frequent malloc calls, and the blocks are not
reused. The SALSA pool relies on its own memory recycling
system using hazard pointers so that producer threads gain
information about load-balancing, since consumers maintain
their own pools of free chunks and a lack of available chunks
indicates an overloaded consumer. Thus we could not pre-
allocate too many of these chunks without causing a spike
in work stealing operations. The CB pool also uses hazard
pointers, but removing memory reclamation degrades per-
formance due to poor memory locality.

We did not consider other pools such as Café [7] or ED-
trees [3] because their performance in prior evaluations did
not scale as well as those tested [13, 29, 14] and their imple-
mentations were not on hand.

4.0.1 Producer-Consumer Benchmark
In this experiment, every thread is assigned to be either

a producer or consumer of fake items, but between each op-
eration a variable amount of work is performed to simulate
the work needed to produce and consume such items. The
work performed after each operation is a loop that generates
one random number per iteration using the Xorshift128 al-
gorithm [20], thus each loop iteration adds a handful of shift
and xor instructions to be performed on variables local to
each thread. Throughput is measured by counting the total
number of items removed from the pool within in a 2 second
wall-clock window, which starts counting down immediately
before the put/get loop once all threads have met at a ren-
dezvous point. All reported values are averages of 10 runs.
We consider the following situations using this benchmark.

N:N Speedup.
In order to test the maximum scalability of the pools when

the ratio of producers to consumers is even, we set the num-
ber of work iterations to zero, and the number of producer-
consumer pairs N is varied from 1 through 24. As seen in
Figure 5a the CDMA pool is roughly 1.43-2x better through-
put than the CB pool, and roughly 4x better throughput
than DQs, at higher levels of parallelism.

While the CDMA pool does not perform better than SALSA,
we also did not expect it to: our goal was to create a pool
that easy to implement correctly. In SALSA, expensive
synchronous instructions such as CAS or memory fences are
avoided in its no-stealing path, and the tradeoff is that steal-
ing is expensive and tricky, however, stealing almost never
happens in this balanced scenario.

24:24 Workload.
To show the performance in a real-world scenario where

other code is executed between operations, we fix the num-
ber of threads to 24 producers and 24 consumers, and vary
the number of iterations of work between each operation. In
Figure 5b we see that DQ and LCRQ are mostly invariant
with respect to the amount of work done between iterations.
For LCRQ this can be explained by the fact that there is still
a sequential bottleneck and many threads. SALSA is very
sensitive to additional work, dropping from roughly 700 to
300 thousand items per millisecond by 20 iterations. The

1 2 4 6 8 10 12 14 16 18 20 22 24
Producer/Consumer Pairs

0

50,000

100,000

150,000

200,000

250,000

300,000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

Maximum N:N Speedup (No Workload)

CB

DQ

CDMA (FIFO)

CDMA

LCRQ

SALSA

(a) N producers and N consumers

0 20 40 60 80 100 120 140 160 180 200
Work Iterations

0

50,000

100,000

150,000

200,000

250,000

300,000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

24:24 Increasing Workload

CB

DQ

CDMA (FIFO)

CDMA

LCRQ

SALSA

(b) 24 producers and 24 consumers

4 8 12 16 20 24 28 32 36 40 44
Consumers

0

25,000

50,000

75,000

100,000

125,000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

Random Workload

CB

DQ

CDMA (FIFO)

CDMA

LCRQ

SALSA

(c) N consumers and 48-N producers

4 8 12 16 20 24 28 32 36 40 44
Consumers

0

20,000

40,000

60,000

80,000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

Hungry Consumers

CB

DQ

CDMA (FIFO)

CDMA

LCRQ

SALSA

(d) N consumers and 48-N producers

Figure 5: Performance measurements of various pools in the producer-consumer benchmark, higher throughput is better. The
CDMA pool’s performance is competitive with prior designs.

CDMA pool shows better performance than the CB pool
throughout the work iterations.

Random Workload.
Using all 48 threads, we vary the ratio of producers to

consumers, but this time all threads pick a random number
between 0 and 200 at the start of each 2 second run, and that
value is the number of iterations of work performed for the
entire run. This situation simulates unbalanced workloads
and the results are shown in Figure 5c. The throughput
curves of CB and CDMA initially cross in approximately the
same horizontally shifted places as in Figure 5d presmably
due to the consumer pickiness described in the next scenario.

Hungry Consumers.
Using all 48 threads, we vary the ratios of producers to

consumers, where the producers perform 200 iterations of
work while consumers perform zero. This situation stresses
the ability for consumers to find items in a totally starved
situation. In Figure 5d we see that for the CDMA pool,
the performance is lower when there are few consumers be-
cause those consumers quickly eat up the items in the bucket
they are after because their corresponding producer is slow.
Then, the consumers begin jumping around the pool, tak-
ing items from the other buckets, which have an abundant
number of items because there is no corresponding consumer

tracking them. In these producer-consumer benchmarks, we
set the priority distribution (dwell penalties) of each con-
sumer to be very picky: an infinite penalty (the max dwell
time) for items from all other buckets, and a penalty of 1 for
the same bucket. If we make consumers less picky about the
buckets from which the items are taken from, such as set-
ting the other-bucket penalty to half of the dwell time, the
throughput improves by 3x, to roughly 72 thousand, when
there are 4 consumers in this scenario.

4.0.2 CDMA Pool Characteristics
In this section, we investigate the behavior of a CDMA

pool with respect to its parameters: dwell penalties, maxi-
mum dwell time, and period size.

Item Prioritization.
One of the flexibilities afforded by the CDMA pool is the

dwell penalties, which controls which types of items a con-
sumer is willing to dwell for. In Section 4.0.1 we considered a
producer-consumer benchmark and the CDMA pool’s buck-
ets had arbitrary meaning and used picky penalties: con-
sumers dwell for the full dwell time when an item of the
same bucket is found, but jump immediately otherwise. If it
is known that certain items are equivalent in cost for the con-
sumer, such as items being within the same NUMA node, we
can change the consumer priorities without recreating or re-

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Producer's Bucket

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

C
o
n
su

m
e
r'

s
P
re

fe
rr

e
d
 B

u
ck

e
t

NUMA Aware Item Prioritization

0

5

10

15

20

P
e
rc

e
n
ta

g
e
 o

f
It

e
m

 T
y
p
e
 C

o
n
su

m
e
d

Figure 6: The CDMA pool allows consumers to choose which
types items to avoid, such as those far away according to
NUMA distance. Dwell penalties for a bucket allocated to
any producer within the same NUMA node relative to each
consumer was set to 1.5 and for consumer’s most preferred
bucket it was set to 1. Darker is better and the black parts
in the heat map are exactly 40% for all consumers, giving a
total of 95% signal quality.

designing the data structure. In Figure 6 we see that bucket
tracking can be easily modified to suit more complicated
notions of the memory locality. We used the same period
and maximum dwell times, 2048 and 64 respectively, as in
our benchmarks earlier and took an average of 10 runs while
looking at the types of items retrieved. The checkerboard
pattern is an artifact of the underlying CPU’s pattern of as-
signing core IDs to NUMA nodes. The 95% signal quality
normally seen with picky priorities becomes spread out, and
each consumer now has 40% of all items removed coming
from their preferred bucket (one producer was matched up
with one consumer), plus 5% of items coming from eleven
other producer’s buckets, but only those producers on the
same NUMA node. There were 12 producers and 12 con-
sumers assigned to each NUMA node and two NUMA nodes
total. The advantage of relaxing consumer pickiness is to see
better throughput in some situations, as discussed in the
Hungry Consumer scenario in Section 4.0.1.

Contention and Throughput.
We varied the maximum dwell time and period size in or-

der to get a sense of what effect this has on the contention
and throughput. In particular, as a control in this experi-
ment we changed the next function in the CDMA pool al-
gorithm to generate the same linear sequence, si+1 = si + 1
(mod period) instead of using the specially designed LCG
sequences. The linear sequence combined with a dwell time
of 1 gives a traditional round-robin approach.

We measure contention and throughput using the producer-
consumer benchmark from Section 4.0.1 with zero work it-
erations. Contention is estimated by measuring the failed
compare-and-swap (CAS) instructions per put or get oper-
ation performed by any thread and then taking the average
of 10 runs. Throughput is measured just as in the regular
producer-consumer benchmark.

In Figure 7 the relationship between period size and dwell
time in various configurations is shown. It is clear from the

figure that for the LCG sequences, contention is significantly
lower. In Figure 8 we see the same data as in the previous fig-
ure but its throughput instead of contention. There is not a
significant difference in throughput between the two types of
sequences, though linear sequences are somtimes better due
to cache effects. While the significantly lower contention
typically suggests better throughput, the CDMA pool ap-
pears to have hit a limit due to its use of expensive CAS
operations, regardless of whether they are contended. Thus,
we believe a more optimistic synchronization technique for
the underlying queues, such as transactional memory may
lead to even better throughput in the CDMA pool.

5. CONCLUSIONS
We presented a lock-free concurrent pool (bag) data struc-

ture using a novel spread-spectrum organization technique,
which is easy to implement for real applications and reuses
ubiquitous lock-free stacks or queues. The pool’s through-
put performance under various producer-consumer scenarios
is also competitive with respect to much of the prior state-
of-the-art.

We showed that the pseudo-prioritization capability can
be applied to problems such as NUMA locality. In our evalu-
ation we also show that the spread-spectrum technique could
be applied to future designs with optimistic synchronization
primitives because the technique is highly distributed and
very effective at reducing contention without degrading per-
formance.

6. ACKNOWLEDGMENTS
Thanks to Elad Gidron, Dmitri Perelman and Idit Kei-

dar for cordially providing the SALSA code for evaluation.
Thanks also to the Scal group and the TAU Multicore Com-
puting group for making their respective implementations
easily accessible and Joseph Wingerter for comments on an
earlier draft.

This material is based upon work supported by the Na-
tional Science Foundation under Grant CCF-1010568. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of these organizations or the U.S. Government.

7. REFERENCES
[1] Intel intrinsics guide. https://software.intel.com/sites/

landingpage/IntrinsicsGuide/, Accessed Jan. 2016.

[2] Y. Afek, G. Korland, M. Natanzon, and N. Shavit.
Scalable producer-consumer pools based on
elimination-diffraction trees. In P. D’Ambra,
M. Guarracino, and D. Talia, editors, Euro-Par 2010 -
Parallel Processing, volume 6272 of Lecture Notes in
Computer Science, pages 151–162. Springer Berlin
Heidelberg, 2010.

[3] Y. Afek, G. Korland, M. Natanzon, and N. Shavit.
Scalable producer-consumer pools based on
elimination-diffraction trees. In Proceedings of the 16th
International Euro-Par Conference on Parallel
Processing: Part II, Euro-Par’10, pages 151–162,
Berlin, Heidelberg, 2010. Springer-Verlag.

[4] Y. Afek, G. Korland, and E. Yanovsky.
Quasi-linearizability: Relaxed consistency for

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

10-2

10-1

C
A

S
 F

a
ilu

re
s

p
e
r

O
p
e
ra

ti
o
n

(a) 24:24 workload, LIFO queues

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

10-2

10-1

C
A

S
 F

a
ilu

re
s

p
e
r

O
p
e
ra

ti
o
n

(b) 16:32 workload, LIFO queues

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

10-3

10-2

10-1

C
A

S
 F

a
ilu

re
s

p
e
r

O
p
e
ra

ti
o
n

(c) 24:24 workload, FIFO queues

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

10-2

10-1

C
A

S
 F

a
ilu

re
s

p
e
r

O
p
e
ra

ti
o
n

(d) 16:32 workload, FIFO queues

Figure 7: Contention in a CDMA pool. Darker is better.

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

50000

75000

100000

125000

150000

175000

200000

225000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

(a) 24:24 workload, LIFO queues

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

40000

60000

80000

100000

120000

140000

160000

180000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

(b) 16:32 workload, LIFO queues

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

40000

60000

80000

100000

120000

140000

160000

180000

200000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

(c) 24:24 workload, FIFO queues

1 2 4 8 16 32 64128
Max Dwell

64

128

256

512

1024

2048

4096

8192

P
e
ri

o
d

LCG Sequences

1 2 4 8 16 32 64128
Max Dwell

No LCG

20000

40000

60000

80000

100000

120000

140000

160000

180000

T
h
ro

u
g
h
p
u
t

(i
te

m
s

p
e
r

m
s)

(d) 16:32 workload, FIFO queues

Figure 8: Throughput in a CDMA pool. Darker is better.

improved concurrency. In Principles of Distributed
Systems, pages 395–410. Springer, 2010.

[5] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The
spraylist: A scalable relaxed priority queue. In
Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP 2015, pages 11–20, New York, NY, USA, 2015.
ACM.

[6] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov,
M. M. Michael, and M. Vechev. Laws of order:
Expensive synchronization in concurrent algorithms
cannot be eliminated. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’11,
pages 487–498, New York, NY, USA, 2011. ACM.

[7] D. Basin, R. Fan, I. Keidar, O. Kiselov, and
D. Perelman. Café: Scalable task pools with
adjustable fairness and contention. In D. Peleg, editor,
Distributed Computing, volume 6950 of Lecture Notes
in Computer Science, pages 475–488. Springer Berlin
Heidelberg, 2011.

[8] F. B. Brown. Random number generation with
arbitrary strides. Transactions of the American
Nuclear Society, 71:202–203, November 1994.

[9] D. Dice, H. Huang, and M. Yang. Asymmetric dekker
synchronization.
https://blogs.oracle.com/dave/resource/
Asymmetric-Dekker-Synchronization-140215.txt, July
2001.

[10] D. Dice and O. Otenko. Brief announcement:
Multilane - a concurrent blocking multiset. In
Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, pages 313–314, New York,
NY, USA, 2011. ACM.

[11] J. Evans. Scalable memory allocation using jemalloc.
www.facebook.com/notes/facebook-engineering/
scalable-memory-allocation-using-jemalloc/
480222803919, 2011.

[12] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Manticore: A heterogeneous parallel language. In
Proceedings of the 2007 Workshop on Declarative
Aspects of Multicore Programming, DAMP ’07, pages
37–44, New York, NY, USA, 2007. ACM.

[13] E. Gidron, I. Keidar, D. Perelman, and Y. Perez.
Salsa: Scalable and low synchronization numa-aware
algorithm for producer-consumer pools. In Proceedings
of the Twenty-fourth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’12, pages 151–160, New York, NY, USA, 2012. ACM.

[14] A. Haas, M. Lippautz, T. A. Henzinger, H. Payer,
A. Sokolova, C. M. Kirsch, and A. Sezgin. Distributed
queues in shared memory: Multicore performance and
scalability through quantitative relaxation. In
Proceedings of the ACM International Conference on
Computing Frontiers, CF ’13, pages 17:1–17:9, New
York, NY, USA, 2013. ACM.

[15] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin,
and A. Sokolova. Quantitative relaxation of concurrent
data structures. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, pages 317–328,

New York, NY, USA, 2013. ACM.

[16] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[17] Q. Huang and W. E. Weihl. An evaluation of
concurrent priority queue algorithms. In Parallel and
Distributed Processing, 1991. Proceedings of the Third
IEEE Symposium on, pages 518–525. IEEE, 1991.

[18] D. E. Knuth. The Art of Computer Programming,
Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[19] G. Marsaglia. The structure of linear congruential
sequences. In: S.K. Zaremba (Ed.): Applications of
Number Theory to Numerical Analysis, pages 249–285,
1972.

[20] G. Marsaglia et al. Xorshift rngs. Journal of Statistical
Software, 8(14):1–6, 2003.

[21] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed
Computing, PODC ’96, pages 267–275, New York,
NY, USA, 1996. ACM.

[22] A. Morrison and Y. Afek. Fast concurrent queues for
x86 processors. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, pages 103–112,
New York, NY, USA, 2013. ACM.

[23] A. Morrison and Y. Afek. Fence-free work stealing on
bounded tso processors. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’14, pages 413–426, New York, NY, USA,
2014. ACM.

[24] W. W. Peterson and D. T. Brown. Cyclic codes for
error detection. Proceedings of the IRE, 49(1):228–235,
1961.

[25] H. Rihani, P. Sanders, and R. Dementiev. Brief
announcement: Multiqueues: Simple relaxed
concurrent priority queues. In Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’15, pages 80–82, New York, NY,
USA, 2015. ACM.

[26] N. Shavit. Data structures in the multicore age.
Commun. ACM, 54(3):76–84, Mar. 2011.

[27] N. Shavit and A. Zemach. Diffracting trees. ACM
Trans. Comput. Syst., 14(4):385–428, Nov. 1996.

[28] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K.
Levitt. Spread Spectrum Communications Handbook
(Revised Ed.). McGraw-Hill, Inc., New York, NY,
USA, 1994.

[29] H. Sundell, A. Gidenstam, M. Papatriantafilou, and
P. Tsigas. A lock-free algorithm for concurrent bags.
In Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, pages 335–344, New York,
NY, USA, 2011. ACM.

[30] D. Torrieri. Principles of Spread-Spectrum
Communication Systems, Second Edition.
Springer-Verlag, New York, NY, USA, 2011.

[31] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, April 1986.

[32] G. I. Webb. Opus: An efficient admissible algorithm
for unordered search. Journal of Artificial Intelligence
Research, pages 431–465, 1995.

